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Lecture 1/10

Introduction and point estimation methods

In this lecture you will learn how to. . .

◮ Introduce statistical inference and illustrate its usefulness
◮ Define the mathematical framework
◮ Present some commonly used estimation methods
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Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise

Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise
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One word, several meanings. . .

◮ One (or several) statistic(s): numerical indicators, often
simple, computed from data.

Examples : average, standard deviation, median, etc.. . .

◮ statistics: a mathematical discipline which has several
branches, including

➠ descriptive statistics,

➠ statistical inference (part 1 of this course),

➠ design of experiments,

➠ statistical learning (part 2 of this course),

➠ . . .

Remark: a mathematical definition of the word “statistic” (first meaning) will
be given later.
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Historical example: the opinion survey case

Desired quantity: descriptive 

statistic calculated for the

entire population,

example : mean age, age 

distribution, opinion, etc.

sample

data observed for only a few 

individuals

A descriptive statistic may be calculated on:
◮ the entire population → quantity of interest
◮ a sample → “approximate” value (sense to be defined)

To infer = to draw conclusions about a population
from data collected for a sample
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Demographic statistics (census)

Descriptive statistics are useful to “explore” data sets

Typical goals: obtain numerical summaries (of small dimension)
and/or easily interpretable visualizations.
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Other example: estimation of a proportion

Context. Consider a box with W white balls and R red balls,
where W and R are unknown.

Goal. Estimate the proportion θ = W
W+R of white balls.

Data (observations). We perform n draws with replacement
➠ for the i-th draw, xi = 1 if the ball is white, 0 otherwise.

Steps to estimate θ

1 statistical modeling
xi realization of a RV Xi , with Xi

iid∼ Ber(θ), 0 ≤ θ ≤ 1

2 inference (here, estimation)
using the data x = (x1, . . . , xn) and the statistical model.

➠ Consider θ̂ = 1
n

∑n
i=1 Xi (a possible descriptive statistic)

➠ Is it reasonable to use it as a “substitute” for the unknown θ

?
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Relation between statistical inference and probability theory
Probability theory provides the foundation for statistical inference:
◮ probability theory: a probability space is given;
◮ statistical inference: several probabilistic models are assumed

possible; we want to extract (from data) information from
data about the underlying probability measure.

Illustration on the “box” example:

Probability
(W and R known)

Inference
(W and R unknown)

typical
questions

• distribution of the number
of white balls after n draws;
• distribution of the num-
ber of draws to get the first
white ball

• estimate θ;
• give an interval
containing θ;
• decide whether θ ≤ 0.5
or not.

type of
conclusions

certain
for finite n, impossible
to answer with certainty
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Application fields & examples of statistical questions

Many fields of application:
◮ Healthcare: identify biomarkers responsible for a disease from

data collected on cohorts.
◮ Environment, safety: estimate the probability of risk from

measurement data.
◮ Industry: control the quality of a production line from data

collected for only a few elements.
◮ Opinion survey : predict the winner of an election from a

survey, quantify the uncertainty about the prediction.
◮ Insurance : evaluate the risk of ruin for an insurance company

facing a disaster.
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Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise
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From data to random variables

Data (observations)

Let x ∈ X denote the data that must be analyzed. For instance:

1 a scalar quantity, measured on n objects/individuals:
➠ x = (x1, . . . , xn), xi ∈ R, X = Rn;

2 d scalar quantities, potentially of different natures, measured
on n objects/individuals:
➠ x = (x1, . . . , xn), xi ∈ Rd , X = Rn×d ;

3 any dataset of a more complex nature
(times series, symbolic data, graphs, etc.).

The data is modeled, a priori, by a random variable (RV) X

➠ x is considered as a realization of X .

Statistics and Learning Lecture 1/10
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Statistical model

The observation space (X ,A )

It is the measurable space in which X takes its values.
Most of the time, we will use:
◮ X = Rn with A = B (Rn)

◮ or, more generally, X = Rn×d with A = B
(
Rn×d

)
.

Statistical modeling

Let (Ω,F ,P) be a probability space carrying:
◮ the observed random variable X ,
◮ any other (unobserved) RV that we might need.

The probability P is not perfectly known: we consider a
◮ set P of probability distributions sur (Ω,F )

12/42

Statistical model (cont’d)

Distribution of the observations
Let PX denote the distribution of X when P ∈ P is the underlying
probability measure.

➠ We have a set PX =
{
PX ,P ∈ P

}
of possible distributions.

Definition: Statistical model
Formally, we call statistical model the triplet

M =
(
X , A , PX

)
.

Remarks:

◮ We can construct several models (Ω,F ,P,X ) for a given M .

◮ In particular, when we only care about the observed RV X , we can work
on the canonical model: Ω = X , F = A , P = PX , X = IdX .
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Statistical inference

Reminder: the data x ∈ X is seen as a realization of X ∼ PX ,
for a certain (unknown) probability P ∈ P.

The goal of statistical inference

Goal: to construct procedures allowing to extract information about
PX from
◮ one realization of X ,
◮ the knowledge of the set PX of all possible distributions.

Important

Since the true probability P is unknown, we must design statistical
procedures that are “applicable” to any probability P ∈ P.

14/42

Family of distributions

The set P is represented by a parameterized family:

P = {Pθ, θ ∈ Θ} .

Parametric model
If Θ is finite-dimensional, the model is called parametric.
◮ the parameter vector θ is often of small size.
◮ we will denote by p the number of parameters (Θ ⊂ Rp).

Example. Family of Gaussian distributions on X = R

PX =
{
N (µ, σ2), µ ∈ R, σ2 ∈ R+

∗
}

(In this example we consider only one scalar observation.)

Statistics and Learning Lecture 1/10
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Assumptions on the family of distributions

Dominated model
The model

M =
(
X , A ,

{
PX
θ , θ ∈ Θ

})

is said to be dominated if there exists a (σ-finite) measure ν

on (X ,A ) such that

∀θ ∈ Θ, ∀A ∈ A , PX
θ (A) =

∫

A
fθ(x) ν(dx).

➠ fθ is the density of PX
θ with respect to ν.

In this course, we will consider the following cases:

◮ “continuous” RV: reference measure ν = Lebesgue’s measure,

◮ discrete RV: reference measures ν = counting measure.
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Assumptions on the family of distributions (cont’d)

Identifiable model
The model

M =
(
X , A ,

{
PX
θ , θ ∈ Θ

})

is identifiable if the mapping θ 7→ PX
θ is injective.

In the rest of this course, all the models will be
◮ dominated by a reference measure ν,
◮ identifiable.
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Sampling models

n-sample

If X = (X1, . . . ,Xn) is such that:
◮ the Xi ’s are (mutually) independent,
◮ all the Xi ’s have the same distribution P,

then the Xi ’s are called independent et identically distributed (iid)
and we say that X is an (iid) n-sample.

Distribution of an n-sample.
Consider the model that describes each of the Xi ’s individually:
◮ (X , A , {Pθ, θ ∈ Θ})

Then we have:
◮ (X ,A ) = (X n,A ⊗n) (product space),
◮ ∀θ ∈ Θ, PX

θ = P⊗n
θ (product distribution).

18/42

Example: component reliability

This application will be used as an illustration in several lectures.

Context

◮ We are interested in the reliability of components from a
production line.

◮ Reliability: measured by the lifetime of the components.
◮ Data (observations): a sample of n = 10 components, for

which the lifetime has been recorded : x = (x1, . . . , xn).

Modeling

◮ Each xi is modeled by a scalar RV Xi .
◮ The Xi ’s are assumed iid, with values in (X ,A ) = (R,B(R)).

Statistics and Learning Lecture 1/10
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Example: component reliability

Modeling (cont’d): family of distributions

Typical∗ assumption for the lifetime of a component:

X1 ∼ E(θ), θ > 0.

Hence the statistical model for one observation:

(R, B(R), {E(θ), θ > 0}) .

Note: this assumption on X1 holds for all the Xi ’s, i ≥ 1.

Density. The exponential distribution E(θ) has the density:

fθ(x) = θ exp(−θx)1[0,∞[(x).

∗ in the case of unpredictable failures, not related to the age of the component

20/42

Example: component reliability

A few problems of (statistical) interest

◮ estimate θ, or
◮ estimate η = 1

θ = E(X1) (average lifetime)

➠ lectures #1 et #2

◮ provide confidence intervals for θ and η

➠ lecture #3

◮ estimate θ given prior information on its value
(e.g., provided by the manufacturer of the production line)

➠ lecture #4 on Bayesian estimation

◮ test the hypothesis η ≤ 10, in order to assess the value of an
optional warranty extension

➠ lecture #5 on hypothesis testing

Statistics and Learning Lecture 1/10
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Data.

0.5627 16.1121 5.4943 7.9374 1.2658
2.9885 8.6266 43.8877 2.1641 8.9138

Table – Measured values (arbitrary units) for a sample of size n = 10

Estimating η : a first estimator†.

X̄ =
1
n

n∑

i=1

Xi
a.s.−−−→

n→∞
Eθ (X1) = η (SLLN).

➠ η̂(1) = X̄ seems to be a “reasonable” estimator of η.

Numerical application η̂(1) = 10.1960

† see Lecture 2 for a definition

22/42

Notations / vocabulary

Notations. We will often use notations such as
◮ Eθ(.) (expectation),
◮ varθ(.) (variance ou covariance matrix),
◮ fθ(.) (density), . . .

to indicate that theses operators or functions depend on a
probability Pθ for a particular value of θ.

Definition: Statistic
A statistic is a random variable (often scalar- or vector-valued) that
can be computed from X alone∗.

Example: the estimator η̂(1) = X̄ is a statistic.

∗ Technically: can be written as a measurable function of X .
In particular, depends neither on other (unobserved) RVs nor on θ.
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Numerical assessment of the performance of η̂(1)

With numerical simulations, (almost) everything is possible!
◮ we choose a particular value of η (here, η∗ = 11, 4), then
◮ we simulate on a computer a large number m of n-samples

(here, m = 10000).

0
*
=11.4 20 30

0

0.02

0.04

0.06

0.08

0.1
histogram
pdf of η̂(1)

η̂(1)

Remarks

◮ Our estimates are, in this case,
not very accurate.

◮ Providing confidence intervals
would be very relevant here.

◮ In this simple example we can
compute the density of η̂(1)

analytically.

A few words on the Gamma distribution Γ(p, λ)

Let X ∼ Γ(p, λ), p > 0, λ > 0). Its pdf is

f (x) =
λp

Γ(p)
xp−1 exp(−λx)1R+(x).

Moments
◮ mean : Eθ(X ) = p

λ

◮ variance : varθ(X ) = p
λ2

Particular cases
◮ E(λ) = Γ(p = 1, λ)

◮ Γ(p = n
2 , λ = n

2 ) = χ2(n)

Properties

◮ Let a > 0. If X ∼ Γ(p, λ), then aX ∼ Γ
(
p, λ

a

)
.

◮ If X ∼ Γ(p, λ), Y ∼ Γ(q, λ), and X and Y are independent, then
X + Y ∼ Γ(p + q, λ).

Application. η̂(1) ∼ Γ
(
n, n

η

)
.

Statistics and Learning Lecture 1/10
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η̂(2) : another estimator

With a convergence argument similar to the one used earlier:

1
n

n∑

i=1

X 2
i

a.s.−−−→
n→∞

Eθ

(
X 2

1
)
=

2
θ2 = 2η2,

therefore using η̂(2) =

√
1
2n
∑n

i=1 X
2
i seems “reasonable” as well.

Numerical application η̂(2) = 11.2228

Questions

◮ How can we compare two estimators ?
◮ If there an estimator that is “better” than the others ?
◮ How to construct “good” estimators ?

Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise
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Mathematical framework

In this section:
◮ we consider a statistical model

M =
(
X ,A ,

{
PX
θ , θ ∈ Θ

})
,

most of the time assumed to be parametric (Θ ⊂ Rp);

◮ when X is an IID n-sample, we write
◮ X = (X1, . . . ,Xn)

◮ X = X n, with X = R or X = Rd ,
◮ PX

θ = P⊗n
θ ;

◮ we want to estimate a “quantity of interest”:
◮ either θ itself,
◮ or, more generally, η = g(θ).

Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise
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The substitution method

Assume that
◮ we already have an estimator η̂ of η = g(θ)

◮ and we want to estimate another quantity of interest η′

that can be written as η′ = h(η), with h a continuous function.

The substitution method
The substitution method consists in using

η̂′ = h (η̂) as an estimator of η.

27/42

Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ), θ > 0.

We are interested in the probability that a failure occurs before t0:

➠ η′ = Pθ (X1 ≤ t0) =

∫ t0

0
θ exp(−θx)dx

= 1 − exp(−θt0) = 1 − exp

(
− t0

η

)
.

Using η̂(1) = X̄ as an estimator of η, we get

η̂′ = 1 − exp
(
− t0

X̄

)
.

Statistics and Learning Lecture 1/10
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Empirical measure

Let X1, . . . ,Xn
iid∼ PX1 .

Recall the Dirac measure at x ∈ X :

∀A ∈ A , δx(A) =

{
1 if x ∈ A,

0 otherwise.

Definition: empirical measure

The empirical measure is the (random) measure defined by:

P̂X1 =
1
n

n∑

i=1

δXi
.

Usefulness: the empirical measure can be seen as an estimator
of PX1 ➠ allows us to construct other estimators using the
substitution method.

29/42

Example : estimator of the k-th order moment

Assume X1 ∈ Lk . Then

mk = E
(
X k

1

)
= G

(
PX1
)

is well defined, with G (µ) =
∫
X xkµ(dx). By substitution:

m̂k = G
(
P̂X1
)
=

∫

X
xk

1
n

n∑

i=1

δXi
(dx) =

1
n

n∑

i=1

X k
i .

Similar example : the sample variance. If X1 ∈ L2 and
η′ = var (X1) = G

(
PX1
)
, where G (µ) =

∫
X x2µ(dx)−

(∫
X xµ(dx)

)2, we get
by substitution:

S2 =
1
n

n∑

i=1

X 2
i − X̄ 2 =

1
n

n∑

i=1

(
Xi − X̄

)2 (sample variance).

Statistics and Learning Lecture 1/10
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One last example : the empirical cdf

Let x ∈ R. The cumulative distribution function (cdf) of X1 at x is

F (x) = PX1 (X1 ≤ x) = Gx

(
PX1
)

with Gx (µ) =

∫ x

−∞
µ(dx).

Hence the empirical cdf:

F̂ (x) =
1
n

n∑

i=1

1{Xi≤x}.

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Figure – Empirical cdf for X1, . . . ,Xn
iid∼ N (0, 1) and n = 20.

Lecture outline
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The method of moments

Assume that
◮ X1, . . . , Xn

iid∼ Pθ, with θ ∈ Θ;
◮ the model is parametric: Θ ⊂ Rp,
◮ we want to estimate θ itself

Consider the function

h : Θ ⊂ Rp → h(Θ) ⊂ Rp,

θ 7→ h(θ) =




Eθ (X1)
...

Eθ

(
X p

1
)


 .

Remark: sometimes other moments can be used (not necessarily the first p).
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The method of moments (cont’d)

Assume h : Θ → h(Θ) injective, and thus bijective.

The method of moments
The method of moments consists in
◮ estimating the first p moments m̂k = 1

n

∑n
i=1 X

k
i , k ≤ p,

◮ then applying h−1 to construct an estimator of θ.

Hence moment-of-moments estimator : θ̂ = h−1 (m̂1:p), where

m̂1:p =




1
n

∑n
i=1 Xi
...

1
n

∑n
i=1 X

p
i


 .

Remark: well defined only if m̂1:p ∈ h(Θ) Pθ-ps, pour tout θ.

Otherwise, minimization of some distance (generalized method of moments).
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Method of moments: examples

Example: component reliability

We have Eθ (X1) = θ−1 (exponential distribution), therefore

θ = (Eθ (X1))
−1 and θ̂ =

(
X̄
)−1

.

Example: X1, . . . ,Xn
iid∼ N (µ, σ2), with θ = (µ, σ2) ∈ R× R∗

+

We have h(θ) =

(
Eθ (X1)
Eθ

(
X 2

1
)
)

=

(
µ

µ2 + σ2

)
,

therefore
(

µ

σ2

)
=

(
Eθ (X1)

Eθ

(
X 2

1
)
− (Eθ (X1))

2

)
,

and finally
(

µ̂

σ̂2

)
=

(
1
n

∑n
i=1 Xi

1
n

∑n
i=1 X

2
i −

( 1
n

∑n
i=1 Xi

)2
)

Exercise. X1, . . . ,Xn
iid∼ U[a,b]. Method-of-moments estimator of (a, b) ?

Lecture outline
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Maximum likelihood estimation

Reminder: dominated model → PX
θ admits a pdf fθ.

Definition: likelihood
We call likelihood the function:

L : Θ×X → R+

(θ; x) 7→ fθ (x)

Remark. Si X1, . . . ,Xn
iid∼ Pθ, then L(θ; x) =∏n

i=1 fθ (xi ).

(usual abuse of notation: here fθ = f X1
θ )

Definition: MLE
If θ̂ is a maximizer of θ 7→ L (θ;X ), then
θ̂ is a maximum likelihood estimator (MLE) of θ.

34/42

MLE: practical details

◮ Existence and uniqueness of the MLE are not guaranteed in
general.

◮ For an IID n-sample, we often use the log-likelihood:

lnL(θ; x) =
n∑

i=1

ln fθ(xi ).

◮ If L is C 2 wrt θ and Θ ⊂ Rp is open, a necessary condition for
θ̂ to be an MLE is:

{ (
∇θ (lnL)

)(
θ̂;X

)
= 0,

(
∇θ∇⊤

θ (lnL)
)(
θ̂;X

)
has negative eigenvalues.

(locally concave function;
∇θ∇⊤

θ is the Hessian operator)

Statistics and Learning Lecture 1/10
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MLE example: component reliability

For x1, . . . , xn ≥ 0, we have L (θ; x) =
∏n

i=1 θ exp (−θxi ), and thus

lnL (θ; x) = n ln(θ)− θ

n∑

i=1

xi .

Stationarity condition (“likelihood equation”)

∂(lnL)
∂θ

(
θ; x
)
= 0 ⇐⇒ n

θ
−

n∑

i=1

xi = 0.

✏ If
∑n

i=1 xi > 0, unique solution in Θ = R∗
+ at θ = n

(∑n
i=1 xi

)−1.

✏ It is indeed a maximum of the likelihood function (cf. sign of the derivative).

➠ Since
∑n

i=1 Xi > 0 a.s., a unique MLE exists: θ̂ =
(
X̄
)−1.

Remark: the same estimator was obtained by the method of moments.

36/42

MLE example: Gaussian IID n-sample, θ =
(
µ, σ2

)

Same approach as in the previous example:

lnL (θ; x) = −n

2
ln(2π)− n

2
ln(σ2)−

∑n
i=1(xi − µ)2

2σ2 ,

(∇θ lnL) (θ; x) =
n

σ2

( 1
n

∑n
i=1 xi − µ

−1
2 + 1

2σ2 · 1
n

∑n
i=1(xi − µ)2

)
.

Solving the likelihood equation yields:

θ̂ =

(
µ̂

σ̂2

)
=

( 1
n

∑n
i=1 Xi

1
n

∑n
i=1(Xi − µ̂)2

)

and it can be proved that the maximum is attained at this point.

Remark: the same estimator was obtained by the method of moments.
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Proof: the maximum is attained at θ̂
a) Let x̄ =

∑n
i=1 xi . For any given σ2, we have:

lnL (θ; x) = − n

2σ2 (µ− x̄)2 + const(x , n, σ2).

➠ µ 7→ lnL (θ; x) is maximal at µ = x̄ .

b) Consider then

g(σ2) = max
µ

lnL
(
(µ, σ2); x

)
= lnL

(
(x̄ , σ2); x

)

= −n

2
ln(2π)− n

2
ln(σ2)−

∑n
i=1(xi − x̄)2

2σ2 .

The function g is differentiable, with derivative

g ′(σ2) =
n

2σ4

(
1
n

n∑

i=1

(xi − x̄)2 − σ2

)
.

We conclude from the sign of g ′ that g is maximal at σ2 = 1
n

∑n
i=1(xi − x̄)2.

➠ θ 7→ L (θ; x) is maximal at
(
x̄ , 1

n

∑n
i=1(xi − x̄)2

)
.

Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation
3.1 – The substitution method
3.2 – The method of moments
3.3 – Maximum likelihood estimation

4 – Warming up exercise
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Exercise 1 (Bernoulli model)

Let X1, . . . ,Xn be an n-sample of binary observations,
independent and identically distributed according to the
Bernoulli B(p) distribution, with p ∈ [0, 1].

Questions

1 Specify a formal statistical model M =
(
X , A , PX

)

corresponding to this description.

2 Construct an estimator of p using the method of moments.

3 Construct an estimator of p using the maximum likelihood
method.

4 Compute the expectation and variance of X̄n = 1
n

∑n
i=1 Xi .
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Solution of Exercise 1

➊ Statistical model M =
(
X , A , PX

)

The “natural” (minimal) set to describe the values of a binary
variable is X = {0, 1}.
➠ X = {0, 1}n for an n-sample

On a finite or countable set, we use in general the discrete
σ-algebra, i.e., the set of all subsets of X .

➠ A = P ({0, 1}n) = P ({0, 1})⊗n

The distribution of an n-tuple (X1, . . . ,Xn) of independent RVs is
the product measure PX1 ⊗ · · · ⊗ PXn .

➠ PX = {B(p)⊗n, p ∈ [0, 1]}
Remark: another possible choice would have been X = Rn, A = B(Rn).
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Solution of Exercise 1 (cont’d)

➋ Method of moments

If X ∼ B(p), then Ep (X ) = p.

➠ The method of moments, applied to the first-order moment,
directly yields the estimator p̂n = 1

n

∑n
i=1 Xi = X̄n.

➌ Maximum likelihood

First write the likelihood:

L(p;X ) =
n∏

i=1

pXi (1 − p)1−Xi

= pN(1 − p)n−N ,

where N =
∑n

i=1 Xi and 00 = 1,
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Solution of Exercise 1 (cont’d)

then the log-likelihood for p ∈ (0, 1):

ℓ(p;X ) = ln(L(p;X ))

= N ln(p) + (n − N) ln(1 − p).

The log-likelihood is differentiable on (0, 1), with derivative

∂ℓ

∂p
(p;X ) =

N

p
− n − N

1 − p

=
n

p(1 − p)
·
(
X̄n − p

)
.

We have ∂ℓ
∂p (p;X ) > 0 iff p < N/n = X̄n,
∂ℓ
∂p (p;X ) < 0 iff p > N/n = X̄n.
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Solution of Exercise 1 (cont’d)

If X̄n = 0, the log-likelihood is strictly decreasing

➠ the likelihood is maximal at p = 0.

If X̄n = 1, the log-likelihood is strictly increasing

➠ the likelihood is maximal at p = 1.

If 0 < X̄n < 1, the log-likelihood is maximal at p = X̄n.

Summary: p̂n = X̄n is the unique MLE.

Remark: the log-likelihood takes infinite values at p = 0 and/or p = 1, but the

likelihood itself is well defined and continuous on [0, 1].

42/42

Solution of Exercise 1 (cont’d)

➍ Expectation and variance of X̄

Reminders
◮ Ep(X1) = p and varp(X1) = p(1 − p).

◮ independence ⇒ decorrelation ⇒ var(
∑

i Xi ) =
∑

i var(Xi ).

Using that the Xi ’s are identically distributed:

Ep

(
X̄n

)
=

1
n

n∑

i=1

Ep[X1] = p.

Using that the Xi ’s are IID:

varp(X̄n) =
1
n2 varp

(
n∑

i=1

Xi

)
=

1
n2

n∑

i=1

varp (Xi ) =
p(1 − p)

n
.
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Lecture 2/10

Point estimation

In this lecture you will learn how to. . .

◮ Learn how to quantify the performance of an estimator.
◮ Learn how to compare estimators.
◮ Introduce the asymptotic approach.
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Lecture outline

1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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Recap: mathematical framework

Data
◮ Formally, an element x in a set X .
◮ ex: X = Rn, Rn×d , {words}, some functional space, etc.

From data to random variables
◮ A priori point of view: before the data is actually collected.
◮ Modeling: RV X taking values in (X ,A ),
◮ but the distribution of X is unknown.

Statistical modeling
◮ X is assumed to be defined on (Ω,F ,P), with P ∈ P.
◮ P : a set of possible probability measures on (Ω,F )

◮ Formally, M =
(
X ,A ,PX

)
, with PX = {PX , P ∈ P}.

Canonical construction: Ω = X , F = A , X = IdX et P = PX .
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Recap: mathematical framework (cont’d)

Important

Since P ∈ P is unknown, we must design statistical procedure that
“work well” (in a sense to be specified) for any distribution P ∈ P.

Parameterized family of probability distributions
◮ Usually, we write P = {Pθ, θ ∈ Θ}.
◮ θ: unknown parameter (scalar, vector, function. . . )
◮ In the following, we assume a parametric model: Θ ⊂ Rp.

Important case: d-variate (iid) n-sample (→ n × d data table)
◮ X = X n, with X ⊂ Rd , endowed with their Borel σ-algebras,

◮ X = (X1, . . . ,Xn) with Xi
iid∼ Pθ, and thus PX

θ = P⊗n
θ .
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Point estimation

Parameter of interest
◮ We are interested in parameter η = g(θ),

where g : Θ 7→ R ou Rq.
◮ Its value is unknown, since θ is unknown.

Informal definition: estimation
Guess (infer) the value of η based on a realization x of X .

Definition: estimator
We call estimator any statistic η̂ = ϕ(X ) taking value in the
set N = g(Θ) of possible values for η.

Remark: the word “estimator” can refer either to the RV η̂ or to the

function ϕ. In practice, we identify the two and write (abusively) η̂ = η̂(X ).

7/55

Example 1 (reminder)

IID Gaussian n-sample: X = (X1, . . .Xn) with

◮ X1,X2, . . . ,Xn
iid∼ N (µ, σ2),

◮ θ =
(
µ, σ2),

◮ Θ = R× ]0; +∞[.

In this example, we assume that we want to estimate the mean µ;
◮ here η = µ and g : θ =

(
µ, σ2) 7→ µ,

◮ σ2 is unknown too (nuisance parameter).
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Example 1 (cont’d)

Some possible estimators. . .
◮ µ̂1 = X̄n = 1

n

∑n
i=1 Xi (method of moments / MLE),

◮ µ̂2 = µ0 for a given µ0 ∈ R,
◮ µ̂3 = 1

2µ0 +
1
2 X̄n,

◮ µ̂4 = X̄n + c for a given c 6= 0,
◮ µ̂5 = med(X1, . . . ,Xn),
◮ . . .

Questions
◮ Is one these estimators “better” than the others?
◮ Can we find an “optimal” estimator ?
◮ In what sense ?

9/55

Other examples

Example 1’
◮ Same statistical model as in Example 1, but
◮ g(θ) = σ2.
◮ In this case, µ is seen as a nuisance parameter.

Example 1”
◮ Again the same statistical model, but
◮ g(θ) = θ = (µ, σ2).
◮ Here, the parameter to be estimated is a vector.
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Other examples (cont’d)

Example 2

◮ X1,X2, . . . ,Xn
iid∼ E(θ), i.e., fθ(x) = θ e−θx 1x≥0,

◮ Θ = (0,+∞),
◮ g(θ) = Eθ(X1) = 1/θ.

Example 2’
◮ Same statistical model, but
◮ g(θ) = Pθ (X1 > x0) = e−θx0 for a given x0 > 0.

11/55

Other examples (cont’d)

Example 3

◮ X1,X2, . . . ,Xn
iid∼ P,

◮ θ = P, unknown distribution,
◮ Θ = {distributions on (R,B(R))},
◮ g(θ) = F : cumulative distribution functions of the Xi ’s.

Example 4

◮ X1,X2, . . . ,Xn
iid∼ Pθ,

◮ Pθ: probability density functions θ(x)
◮ Θ =

{
pdf on R, of class C 2, with

∫
θ′′(x)2 dx < +∞

}

◮ g(θ) = θ.

Examples 3 et 4: non-parametric statistics (not treated in this course).
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1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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General concept of risk

Goal
Quantify the performance of an estimator

Consider a loss function L : N × N → R.
◮ Reminder: N = g(Θ) is the set of all possible values for η.
◮ Interpretation: we lose L(η, η′) if we choose η′ as our estimate

while η is the true value.

Risk
For a given loss function L, we define the risk Rθ(η̂) of the
estimator η̂, for the value θ ∈ Θ of the unknown parameter, by

Rθ (η̂) = Eθ (L (g(θ), η̂)) .
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Quadratic risk

Quadratic risk

We call quadratic risk the risk associated with the loss function

L(η, η′) = ‖η − η′‖2,

that is,
Rθ (η̂) = Eθ

(
‖g(θ)− η̂‖2) .

Remarks
◮ Also called “mean square error” (MSE).
◮ Most commonly used notion of risk

(for the sake of simplicity, as we will see);
◮ in the rest of the lecture, we will consider this risk exclusively.
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Example 1 (reminder)

IID Gaussian n-sample: X = (X1, . . .Xn) with

◮ X1,X2, . . . ,Xn
iid∼ N (µ, σ2),

◮ θ =
(
µ, σ2),

◮ Θ = R× ]0; +∞[.

In this example, we assume that we want to estimate the mean µ;
◮ here η = µ and g : θ =

(
µ, σ2) 7→ µ,

◮ σ2 is unknown too (nuisance parameter).
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Example 1: risk of the estimator µ̂1

Consider the estimator

µ̂1 = X̄n =
1
n

n∑

i=1

Xi .

For all θ =
(
µ, σ2) ∈ Θ, we have the following result:

Quadratic risk of the sample mean

Rθ (µ̂1) = Eθ

(
(µ̂1 − µ)2

)
=

σ2

n
.

Remark: the result holds as soon as the Xi ’s have finite second order moments

(Gaussianity is not actually used)
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Example 1: risk of the estimator µ̂1 (computation)

Notice that

Eθ(µ̂1) =
1
n

n∑

i=1

Eθ(Xi ) = µ.

Therefore

Rθ (µ̂1) = varθ (µ̂1) =
1
n2 varθ

(
n∑

i=1

Xi

)

=
1
n2

n∑

i=1

varθ (Xi ) =
σ2

n

Statistics and Learning Lecture 2/10

44/310



17/55

Bias of an estimator
Let η̂ be an estimator of η = g(θ) st Eθ (‖η̂‖) < +∞, ∀θ ∈ Θ.

Definition: bias / unbiased estimator

The bias of an estimator η̂ at θ ∈ Θ is defined as

bθ(η̂) = Eθ(η̂)− g(θ).

We will say that η̂n is an unbiased estimator (UE) if

bθ(η̂) = 0, ∀θ ∈ Θ.

Example 1
◮ We have already seen that µ̂1 = X̄n is an UE of µ.
◮ More generally (exercise): µ̂ = α+ βX̄n is an UE of µ if, and

only if, α = 0 et β = 1.
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Bias-variance decomposition

Reminder: we still consider the quadratic risk.

Let η̂ be an estimator of η = g(θ) st Eθ

(
‖η̂‖2) < +∞, ∀θ ∈ Θ.

Proposition: Bias-variance decomposition (scalar case)

If the quantity of interest is scalar (η ∈ R), we have:

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)
= varθ (η̂) + bθ(η̂)

2.

Remark: we can generalize to the vector case by summing over the
components:

Rθ (η̂) = Eθ

(
‖η̂ − g(θ)‖2) = tr (varθ (η̂)) + ‖bθ(η̂)‖2,

where varθ (η̂) is the covariance matrix of η̂.
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Example 1: risk of some estimators

µ̂1 = X̄n Rθ(µ̂1) =
σ2

n
+ 02

µ̂2 = µ0 Rθ(µ̂2) = 02 + (µ− µ0)
2

µ̂3 =
1
2
µ0 +

1
2
X̄n Rθ(µ̂3) =

1
4
σ2

n
+

1
4
(µ− µ0)

2

µ̂4 = X̄n + c Rθ(µ̂4) =
σ2

n
+ c2

µ̂5 = med(X1, . . . ,Xn) Rθ(µ̂5) ≈ 1.57
σ2

n
+ 02 (n → +∞)

Exercise: Compute Rθ(µ̂j), 2 ≤ j ≤ 4

Remark: only the result for µ̂5 actually uses the Gaussianity assumption.
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Admissible estimators

Definition: order relation on the set of estimators
We will say that η̂′ is (weakly) preferable to η̂ if
◮ ∀θ ∈ Θ, Rθ(η̂

′) ≤ Rθ(η̂),

We will say that it is strictly preferable to η̂ if, in addition,
◮ ∃θ ∈ Θ, Rθ(η̂

′) < Rθ(η̂),

Remarks
◮ The relation “is preferable to” is a partial order on risk functions.
◮ In general there is no optimal estimator, i.e., no estimator that is preferable to

all the others (unless we restrict the class of estimators that is considered)

Admissibility

We will say that η̂ is admissible if there is no estimator η̂′ that is
strictly preferable to it.
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Example 1 (cont’d)

µ̂1 = X̄n Rθ(µ̂1) =
σ2

n
+ 02

µ̂2 = µ0 Rθ(µ̂2) = 02 + (µ− µ0)
2

µ̂3 =
1
2
µ0 +

1
2
X̄n Rθ(µ̂3) =

1
4
σ2

n
+

1
4
(µ− µ0)

2

µ̂4 = X̄n + c Rθ(µ̂4) =
σ2

n
+ c2

◮ µ̂1 is strictly preferable to µ̂4, therefore µ̂4 is not admissible.
◮ µ̂1, µ̂2, et µ̂3 are pairwise incomparable.
◮ It can be proved that all three are admissible.

Exercise: Prove that µ̂2 is admissible.

Lecture outline

1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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Motivation

We will present in this section a lower bound of the form

varθ(η̂) ≥ vmin(θ), ∀θ ∈ Θ,

that holds for (nearly) all unbiased estimators of g(θ).

Remark: for an UE, Rθ(η̂) = varθ(η̂).

Usefulness of such a bound?

1 Prove that a certain level of accuracy cannot be met by an
unbiased estimator.

2 Prove that a given UE is optimal (rare situation).

3 Prove that a given UE is nearly optimal.

23/55

Regularity condition C1

Dominated model: there exists a (σ-finite) measure ν on (X ,A ) st

∀A ∈ A , Pθ (X ∈ A) =

∫

A
fθ(x) ν(dx).

Regularity condition C1

The densities fθ share a common support: ∃S ∈ A ,

∀θ ∈ Θ, fθ(x) > 0 ⇔ x ∈ S.

Remarks:

◮ S is only defined up to a ν-négligible set (as pdf’s are).

◮ Strictly speaking, the “support” of the measure is the closure of S.

Statistics and Learning Lecture 2/10

48/310



24/55

Regularity condition C1: examples / counter-example

Consider an IID univariate n-sample:

X ∼ fθ(x) =
n∏

i=1

fθ(xi )

(with a usual abuse of notation for the pdf’s).

Remark: if C1 holds for n = 1 with S = S1,
then it also holds for all n ≥ 2 with S = Sn

1 .

A few examples. . .

1 N (µ, σ2) with σ2 > 0: C1 holds with S1 = R,

2 E(θ): C1 holds with S1 = [0,+∞).

3 U[0,θ]: C1 does not hold!
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Another regularity condition

We assume that C1 holds.

Regularity condition C2

i Θ is an open subset of Rp,

ii θ 7→ fθ(x) is differentiable for ν-almost all x ,

iii and, at any θ ∈ Θ, we have
∫

S
∇θfθ(x) ν(dx) = ∇θ

∫

S
fθ(x) ν(dx) = 0.

In other words: ∀θ ∈ Θ, ∀k ≤ p,
∫

S

∂fθ(x)

∂θk
ν(dx) =

∂

∂θk

∫

S
fθ(x) ν(dx) = 0.
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Score

Definition / property: score

Assume that C1, C2-i and C2-ii hold and define, for all x ∈ S

Sθ(x) = ∇θ (ln fθ(x)) =




∂ ln fθ(x)
∂θ1
...

∂ ln fθ(x)
∂θp


 .

Then

i We call score the random vector Sθ = Sθ(X ).

ii C2-iii ⇔ ∀θ ∈ Θ, the score Sθ is centered under Pθ.

Remarks:

◮ Well defined, since X ∈ S Pθ-ps, ∀θ ∈ Θ.

◮ The score vanishes at the MLE (recall that Θ ⊂ Rp is assumed open).
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The score is centered (proof)

Notice that
∇θ (ln fθ) =

1
fθ

∇θfθ,

and thus, for all θ ∈ Θ,

Eθ (Sθ) =

∫

S
Sθ(x) fθ(x) ν(dx)

=

∫

S

1
fθ(x)

∇θfθ(x) fθ(x) ν(dx)

=

∫

S
∇θfθ(x) ν(dx).

Finally,

Eθ (Sθ) = 0 ⇔
∫

S
∇θfθ(x) ν(dx) = 0 (C2-iii).
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Example 2

Recall that X1, . . . ,Xn
iid∼ E(θ) with θ ∈ Θ = ]0,+∞[.

We compute the likelihood, for any x1, . . . , xn ≥ 0:

L(θ; x) = fθ(x) =
n∏

i=1

fθ(xi ) = θn e−θ
∑

xi ,

then the log-likelihood:

lnL(θ; x) = ln fθ(x) = n ln θ − θ
∑

xi ,

and, finally, the score:

Sθ(X ) =
n∑

i=1

Sθ(Xi ) = n

(
1
θ
− X̄n

)
.
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Remark on condition C2-iii

Recall C2-iii: ∀θ ∈ Θ,
∫

S
∇θfθ(x) ν(dx) = ∇θ

∫

S
fθ(x) ν(dx) = 0,

or, equivalently: Eθ(Sθ) = 0.

Two approaches are available to check this condition:

1 Compute explicitely Eθ(Sθ) =
∫
S ∇θfθ(x) ν(dx).

2 Use a domination condition: show that ∀θ0 ∈ Θ, ∃V ⊂ Θ,
neighboorhood of θ0, and a ν-integrable function g : X → R st

∀θ ∈ V , ∀x ∈ S, ∀k ≤ p,

∣∣∣∣
∂fθ(x)

∂θk

∣∣∣∣ ≤ g(x).

Statistics and Learning Lecture 2/10

51/310



30/55

Cramér-Rao inequality (scalar case)
Consider a statistical model where C1 and C2 hold, and
∀θ ∈ Θ, varθ(Sθ) > 0.

Let η̂ be an estimator of η = g(θ) ∈ R st Eθ

(
η̂2) < +∞, ∀θ ∈ Θ.

Definition: regular estimator

η̂ is said to be regular if θ 7→ Eθ (η̂) is differentiable, with

∇θEθ (η̂) =

∫

S
η̂(x)∇θfθ(x) ν(dx), ∀θ ∈ Θ.

Theorem / definition: Cramér-Rao inequality

If η̂ is regular unbiased estimator, then ∀θ ∈ Θ

Rθ (η̂) = varθ (η̂) ≥ ∇g(θ)⊤ varθ (Sθ)
−1 ∇g(θ).

An unbiased estimator is called efficient if the bound is met for all θ.

Proof
Preliminary remark: since η̂ is a regular UE of g(θ),
g is differentiable.

Let θ ∈ Θ, and set c = covθ (Sθ, η̂) ∈ Rp. Then, ∀a ∈ Rp,

varθ

(
η̂ − a⊤Sθ

)
= varθ (η̂)− 2a⊤c + a⊤ varθ (Sθ) a ≥ 0.

In particular, for a = varθ (Sθ)
−1 c ∈ Rp, we get:

varθ (η̂)− c⊤ varθ (Sθ)
−1 c ≥ 0.

Finally, since Sθ is centered and η̂ is a regular UE,

c = Eθ (η̂Sθ) =

∫

S
η̂(x) · 1

fθ(x)
∇θfθ(x) · fθ(x) ν(dx)

=

∫

S
η̂(x)∇θfθ(x) ν(dx) = ∇θEθ (η̂) = ∇g(θ).
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Fisher information (scalar case)

We still assume that C1 and C2 hold.

Definition: Fisher information
We call Fisher information of X the p × p matrix

IX (θ) = varθ(Sθ(X )) = Eθ

(
Sθ(X ) Sθ(X )⊤

)

which appears in the Cramér-Rao lower bound.

Proposition

Let In(θ) denote the Fisher information in an IID n-sample. Then

In(θ) = n I1(θ).

The CR inequality becomes: varθ(η̂) ≥ 1
n ∇g(θ)⊤ I1(θ)

−1∇g(θ).
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Proof

Notice that the score is additive in an IID sample:

Sθ(X ) =
n∑

i=1

Sθ(Xi )

and thus

varθ (Sθ(X )) =
n∑

i=1

varθ (Sθ(Xi )) = n varθ (Sθ(X1))

since Sθ(X1), . . . , Sθ(Xn) are IID.
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Example 1: estimation of µ

Reminder: X1, . . . ,Xn
iid∼ N (µ, σ2) and θ = (µ, σ2)

◮ µ̂n = X̄n is the MLE of µ,
◮ µ̂n is unbiased and Rθ(µ̂n) = varθ(µ̂n) =

σ2

n .

Exercise: the Fisher information matrix in this model is

In(θ) = n

( 1
σ2 0
0 1

2σ4

)
.

Cramér-Rao inequality with g(θ) = µ: ∀µ̂′
n UE of µ,

Rθ(µ̂
′
n) = varθ(µ̂

′
n) ≥

σ2

n
,

therefore µ̂n = X̄n is efficient.
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Example 1’: estimation of σ2

Same statistical model, but we want to estimate g(θ) = σ2.

Exercise: show that
◮ the MLE S2

n = 1
n

∑n
i=1
(
Xi − X̄n

)2 is biased;

◮ σ̂2
n = (S ′

n)
2 = 1

n−1
∑n

i=1
(
Xi − X̄n

)2 is an UE of σ2.

It is then possible to show (see TD 6) that

varθ
(
σ̂2
n

)
=

2σ4

n − 1
,

therefore σ̂2
n is not an efficient estimator, since

varθ
(
σ̂2
n

)
>

2σ4

n
.

(Beware the misleading terminology: it can be proved, using Lehmann-Scheffé’s theorem, that σ̂2
n is a

minimal variance UE for this problem, and therefore is optimal for the quadratic risk among all UE’s.)
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Exercise solution

Let us show that the sample variance S2
n is biased:

Eθ(S
2
n ) = Eθ

(
1
n

n∑

i=1

X 2
i − X̄ 2

n

)
= Eθ

(
X 2

1
)
− Eθ

(
X̄ 2
n

)

=
(
σ2 + µ2)−

(
σ2

n
+ µ2

)
=

n − 1
n

σ2 6= σ2.

We conclude that the “corrected” sample variance is unbiased:

Eθ((S
′
n)

2) =
n

n − 1
Eθ(S

2
n ) =

n

n − 1
· n − 1

n
σ2 = σ2.

Lecture outline

1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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Motivation / notations

Problem
It is sometimes (often !) difficult to obtain the exact properties of
statistical procedures.

(point estimators, but also CIs, tests, etc. (cf. next lectures))

Asymptotic approach(es) → approximate properties

◮ X1,X2, . . .
iid∼ Pθ, defined on a common (Ω,F ,Pθ)

◮ Sequences of estimators: η̂n = η̂n(X1, . . . ,Xn)

◮ Properties of the estimators when n → ∞?

Remark: we have now not one but a sequence (Mn)n≥1 of statistical models

Mn =
(
X n,A ⊗n,

{
P⊗n

θ , θ ∈ Θ
})

,

that we instantiate on a common underlying probability space (Ω,F ).
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Probability refresher: convergence modes
Main convergence modes that are useful in Statistics:
◮ almost sure convergence ,
◮ convergence in L2 (in mean square),
◮ convergence in probability,
◮ convergence in distribution.

Implications between convergence modes:

m.s.

proba

a.s.

distrib
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Probability refresher: convergence modes
✐ almost sure convergence :

Tn
ps−→ T if P (Tn → T ) = 1

✐ convergence in L2 (in mean square):

Tn
L2
−→ T if E

(
‖Tn − T‖2)→ 0

iff ∀j ≤ p, T
(j)
n

L2
−→ T (j)

✐ convergence in probability:

Tn
P−→ T if ∀ε > 0, P (‖Tn − T‖ ≥ ε) → 0

✐ convergence in distribution:

Tn
loi−→ T if ∀ϕ, E (ϕ(Tn)) → E (ϕ(T )) ,

with ϕ : Rp → R continuous and bounded.
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Consistency
Let (η̂n) denote a sequence of estimators of η = g(θ).

(weak) Consistency

We will say that η̂n is a consistent estimator of η = g(θ) if, ∀θ ∈ Θ,

η̂n
Pθ−−−→

n→∞
g(θ).

(with an obvious abuse of terminology)

Strong and mean-square consistency

We will say that η̂n is strongly consistent
(resp. consistent in the mean-square sense) if, ∀θ ∈ Θ,

η̂n
Pθ−a.s.−−−−→
n→∞

g(θ)

(
resp., η̂n

L2(Pθ)−−−−→
n→∞

g(θ)

)
.

Remark: the work “convergent” is sometimes used instead of “consistent”.
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Probability refresher: law of large numbers

Let (Xk)k≥1 be a sequence of real- or vector-valued RV.

Strong law of large numbers

If the Xk ’s are IID and E (‖X1‖) < +∞, then

X̄n
a.s.−−−→

n→∞
E(X1).

Law of large numbers in L2

If the Xk ’s are IID and E
(
‖X1‖2) < +∞, then

X̄n
L2

−−−→
n→∞

E(X1).

Proof (scalar case): E
((

X̄n − E(X1)
)2
)
= varθ(X̄n) =

1
n
varθ(X1) → 0.
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Consistency: examples

A) IID n-sample with finite first order moment
◮ i.e., Eθ(‖X1‖) < +∞, for all θ ∈ Θ.
◮ X̄n is a strongly consistent estimator of η = Eθ(X1).
◮ Nothing can be said about the quadratic risk without

additional assumptions.

B) IID n-sample with finite second order moment
◮ i.e., Eθ(‖X1‖2) < +∞, for all θ ∈ Θ.
◮ X̄n is strongly consistent and consistent in the mean-square

sense for η = Eθ(X1).
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Consistency: examples (cont’d)

0 50 100 150 200
0

5

10

15

n

X̄
n

Convergence of X̄n to the true mean
(for a Gamma n-sample with true mean µ = 1.5)
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Consistency: examples (cont’d)

C) IID n-sample (with any distribution)
◮ Let A ∈ A and η = g(θ) = Pθ (X1 ∈ A).
◮ Relative frequency: η̂n = 1

n card {i ≤ n | Xi ∈ A}
◮ η̂n is a strongly and mean-square consistent estimator of η.

Application: histograms
◮ Let X = ∪K

k=1Ak denote a partition of X
◮ vector-valued η̂n: η̂

(k)
n = 1

n card {i ≤ n | Xi ∈ Ak}
◮ η̂n is a strongly and mean-square consistent estimator of

η = (Pθ (X1 ∈ Ak))1≤k≤K .
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Consistency: examples (cont’d)

Histogram of x1

x1

F
re

q
u

e
n

c
y

2 3 4 5

0
2

0
4

0
6

0

Example of a (un-normalized) histogram
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Consistency: examples (cont’d)

D) Maximum of a uniform IID n-sample

◮ X1, . . . ,Xn
iid∼ U[0,θ]

◮ We estimate η = θ with η̂n = maxi≤n Xi .
◮ Exercise (TD 1): show that η̂n is consistent, both strongly and

in the mean-square sense.

E) Maximum likelihood estimator
◮ see below
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Asymptotically unbiased estimator

Recall that bθ(η̂) = Eθ(η̂)− g(θ).

Definition: asymptotically unbiased

We will say that an estimator η̂n is asymptotically unbiased if

bθ(η̂)
n→+∞−−−−→ 0, ∀θ ∈ Θ.

Proposition

η̂n is consistent in the mean-square sense if, and only if, the two
following conditions met:

i η̂n is asymptotically unbiased,

ii varθ(η̂n) → 0, for all θ ∈ Θ. (tr (varθ(η̂)) → 0 in the vector case)

Proof: Use the bias-variance decomposition!
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Asymptotically unbiased estimator: example

X1, . . . ,Xn
iid∼ U[0,θ], and we want to estimate θ.

Let us prove that θ̂n = maxi≤n Xi is asymptotically unbiased.

Method 1: direct computation
◮ Compute the expectation: Eθ(θ̂n) =

n
n+1 θ (cf. TD),

◮ hence the bias: bθ(θ̂) = − θ
n+1 → 0.

Method 2: dominated convergence theorem
◮ We already know that θ̂n is strongly consistent;
◮ besides

∣∣θ̂n
∣∣ ≤ θ, Pθ − a.s.;

◮ therefore Eθ

(
θ̂n
)
→ θ by the dominated convergence theorem.
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Consistency of the MLE

The MLE minizes the following criterion:

γn(θ) = −1
n
ln fθ(X ) = −1

n

n∑

k=1

ln fθ(Xi ).

Let θ ∈ Θ, and set c = covθ (Sθ, η̂) ∈ Rp. Then, ∀θ ∈ Θ,

γn(θ)−γn(θ⋆) =
1
n

n∑

k=1

ln
fθ⋆(Xi )

fθ(Xi )
n→+∞−−−−→

ps

∫

S1

ln
fθ⋆(x)

fθ(x)
fθ⋆(x) ν1(dx).

(assuming that Zi =
fθ⋆ (Xi )

fθ(Xi )
has a finite first order moment).

Definition / property: Kullback-Leibler divergence
DKL (fθ⋆ ||fθ) =

∫
S1

ln
fθ⋆ (x)

fθ(x)
fθ⋆(x) ν1(dx) ≥ 0

Consistency of the MLE (cont’d)

Set ∆n(θ⋆, θ) =
1
n

∑n
k=1 ln

fθ⋆ (Xi )
fθ(Xi )

and ∆(θ⋆, θ) = DKL (fθ⋆ ||fθ).

We have ∆n(θ⋆, θ)
Pθ⋆−ps−−−−→
n→+∞

∆(θ⋆, θ) for all θ, and ∆(θ⋆, θ⋆) = 0.

Theorem: Consistency of the MLE

Assume that, for all θ⋆ ∈ Θ,

i supθ∈Θ |∆n(θ⋆, θ)−∆(θ⋆, θ)|
Pθ⋆−−−−→

n→+∞
0

ii and, for all ǫ > 0,

inf
θ∈Θ, ‖θ−θ⋆‖≥ǫ

∆(θ⋆, θ) > 0.

Then the MLE is (weakly) consistent.
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Lecture outline

1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Warming up exercises
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Exercise 1 (quadratic risk)

Let X1, . . . ,Xn
iid∼ N (µ, σ2) with θ = (µ, σ2) ∈ Θ = R× R+

∗ .
We want to estimate g(θ) = µ. We consider the estimators

µ̂1 = X̄n, µ̂2 = µ0, µ̂3 =
1
2
µ0 +

1
2
X̄n, µ̂4 = X̄n + c ,

where µ0 and c are given real numbers.

Questions

1 Prove the bias-variance decomposition formula in the scalar
case (see slide 18)

2 Compute the quadratic risk of each of these estimators

3 Prove that µ̂2 and µ̂3 are not comparable.

4 Prove that µ̂4 is not admissible.
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Exercise 2 (efficiency of an estimator)

Let X1, . . . ,Xn
iid∼ B(θ) with θ ∈ Θ = ]0, 1[.

Recall that (see Exercises in Lecture 1):
◮ the log-likelihood of the n-sample is

lnL(θ; x) = ln fθ(x) = n ln(1 − θ)− ln

(
θ

1 − θ

) n∑

i=1

xi ,

◮ the MLE is θ̂n =
1
n

∑n
i=1 Xi .

Questions

1 Check that the model satisfies the hypotheses for
Cramér-Rao’s inequality, and compute Cramér-Rao’s bound.

2 Is the MLE θ̂n efficient?
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Solution of Exercise 1

➊ Bias-variance decomposition

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)
= varθ (η̂) + bθ(η̂)

2.

Proof

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)

= Eθ

(
(η̂ − Eθ(η̂) + bθ(η̂))

2)

= Eθ

(
(η̂ − Eθ(η̂))

2)
︸ ︷︷ ︸

varθ(η̂)

+ bθ(η̂)
2 + 2 Eθ (η̂ − Eθ(η̂))︸ ︷︷ ︸

=0

bθ(η̂)

= varθ (η̂) + bθ(η̂)
2.
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Solution of Exercise 1 (cont’d)

➋ Compute the biais and variance of each estimator, and then
conclude using the bias-variance decomposition.

expectation bias variance quadratic risk

X̄n µ 0 σ2

n
σ2

n

µ0 µ0 µ0 − µ 0 (µ0 − µ)2

1
2

(
µ0 + X̄n

) 1
2 (µ0 + µ) 1

2 (µ0 − µ) 1
4

σ2

n
1
4

σ2

n + 1
4 (µ0 − µ)2

X̄n + c µ+ c c σ2

n
σ2

n + c2

Reminder: varθ(αX + β) = α2 varθ(X ).
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Solution of Exercise 1 (cont’d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Draw the four risks for σ2 = 1, n = 10, µ0 = 1 and c = 0.5.
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Solution of Exercise 1 (cont’d)

➌ Let us compute the risk two well-chosen points.

For θ = (µ0, 1) we have

Rθ (µ̂2) = 0, Rθ (µ̂3) =
1
4n

, therefore Rθ (µ̂2) < Rθ (µ̂3) .

For θ =
(
µ0 +

1√
n
, 1
)

we have

Rθ (µ̂2) =
1
n
, Rθ (µ̂3) =

1
2n

, therefore Rθ (µ̂2) > Rθ (µ̂3) .

Therefore the estimators µ̂2 and µ̂3 are not comparable.
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Solution of Exercise 1 (cont’d)

➍ We have: 



Rθ (µ̂4) =
σ2

n
+ c2

Rθ (µ̂1) =
σ2

n

Therefore, ∀θ = (µ, σ2) ∈ Θ = R× R+
∗ , Rθ (µ̂4) > Rθ (µ̂1)

Thus µ̂4 is not admissible.
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Solution of Exercise 2

➊ Let us check that the model satisfies the regularity conditions C1

and C2, and that Fisher’s information does not vanish.

✏ C1: since Θ = ]0, 1[, the densities

fθ(x) = θ
∑n

i=1 xi (1 − θ)n−
∑n

i=1 xi

are all supported on S = {0, 1}n.

✏ C2: Θ = ]0, 1[ is an open subset of R, θ 7→ fθ(x) is
differentiable on Θ for all x , and the score

Sθ(X ) =
∂(ln fθ)

∂θ
(Xi ) =

n

θ(1 − θ)

(
X̄n − θ

)
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Solution of Exercise 2 (cont’d)

is centered: Eθ (Sθ(X )) =
n

θ(1 − θ)

(
Eθ(X̄n)− θ

)
= 0.

✏ Finally, we check that the Fisher information does not vanish:

I (θ) = varθ (Sθ(X )) =

(
n

θ(1 − θ)

)2

varθ(X̄n) =
n

θ(1 − θ)
> 0.

✏ The Cramér-Rao bound for θ is

I (θ)−1 =
1
n
θ(1 − θ).
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Solution of Exercise 2 (cont’d)

➋ The estimator θ̂n = 1
n

∑n
i=1 Xi is unbiased:

Eθ(θ̂n) = Eθ(X1) = θ,

and its variance is

var(θ̂) =
1
n
var(X1) =

θ(1 − θ)

n
= I (θ)−1.

Therefore it is efficient.

Remark: it is easy to check that θ̂n is a regular estimator (see definition on
slide 30), since

a the density fθ is differentiable with respect to θ,

b the integrals boil down to finite sums over {0, 1}n.
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Lecture 3/10

Asymptotic distributions
and confidence intervals

In this lecture you will learn how to. . .

◮ Take the asymptotic approach one step further,
introducing asymptotic distributions.

◮ Learn what confidence intervals are and show how to construct
them (using, again, asymptotic arguments if needed)
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Lecture outline

1 – Convergence rate and asymptotic distribution
1.1 – Definitions and examples
1.2 – Theoretical tools
1.3 – Asymptotic efficiency

2 – Confidence regions and confidence intervals
2.1 – Definition and example
2.2 – Exact confidence intervals
2.3 – Asymptotic confidence intervals

3 – Warming up exercises
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Mathematical framework

In this section:
◮ we consider a statistical model

(
X ,A ,

{
PX
θ , θ ∈ Θ

})
,

assumed (most of the time) to be parametric (Θ ⊂ Rp);

◮ X1,X2, . . .
iid∼ Pθ, defined on a common (Ω,F ,Pθ)

◮ we want to estimate a “quantity of interest”:
◮ either θ itself (we assume in this case that Θ ⊂ Rp),
◮ or, more generally, η = g(θ) ∈ Rq.
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Convergence rate

Let η̂n = η̂n(X1, . . . ,Xn) be a consistent estimator of η = g(θ).

Definition
If there exists a sequence (an)n∈N∗ of positive numbers such that:
◮ lim

n→∞
an = ∞,

◮ an (η̂n − η)
d−−−→

n→∞
Z ,

◮ where Z is a non-degenerate∗ random variable (or vector),

then η̂n converges to η at the rate 1
an

.

∗ We say that Z is degenerate if:

◮ scalar case: ∃c ∈ R, Z = c a.s.;

◮ vector case: ∃a ∈ Rq \ {0}, ∃c ∈ R,
∑q

j=1 ajZ
(j) = c a.s.;

Exercise. Let Z be a random vector with finite second order moments.
➠ Prove that Z is non-degenerate iff its covariance matrix is invertible.
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Asymptotic normality

Let η̂n = η̂n(X1, . . . ,Xn) be a consistent estimator of η = g(θ).

Definition
If there exists
◮ a sequence (an)n∈N∗ of positive numbers s.t. lim

n→∞
an = ∞,

◮ a symmetric positive-definite matrix Σ(θ),

such that
an (η̂n − η)

d−−−→
n→∞

N (0,Σ(θ)) , (1)

then we say that η̂n is asymptotically normal.

Vocabulary. Σ(θ) is called the asymptotic covariance matrix
(asymptotic variance, in the scalar case).

Note: it can be proved that (1) with an → +∞ implies consistency.
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Relation between convergence in distribution and in proba.
We already know that convergence in probability implies convergence in
distribution. Let (Yn)n∈N∗ be a sequence of RV with values in Rd .

Proposition
If Yn

d−→ c, with c ∈ Rd a constant, then Yn
P−→ c.

Corollary
If there exists c ∈ Rd ,

◮ a RV Z with values in Rd ,

◮ a sequence (an)n∈N∗ of real numbers such that lim
n→∞

an = ∞,

such that
an (Yn − c)

d−−−→
n→∞

Z

then
Yn

P−−−→
n→∞

c.

Proof (exercise): use above proposition and Slutsky’s theorem (see below).
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Probability refresher: the Central Limit Theorem (CLT)

Theorem
Let
◮ a sequence (Xn)n∈N∗ of IID RV taking values in Rd , with finite

second order moments.
◮ µ = E(X1) and Σ = var(X1) ∈ Rd×d .

Then :
√
n
(
X̄n − µ

) d−−−→
n→∞

N (0,Σ),

with X̄n =
1
n

∑n
i=1 Xi the sample mean.

⇒ The sample mean X̄n

◮ is an asymptotically Gaussian estimator of µ = E(X1)

◮ with convergence rate 1√
n
.
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Example: component reliability

Recall that
◮ Xi

iid∼ E(θ), θ > 0, and η = Eθ(X1) =
1
θ .

◮ η̂n = X̄n is obtained by ML and the method of moments.

➠ Direct application of the CLT:
√
n
(
X̄n − η

) d−−−→
n→∞

N
(
0, η2).
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Histograms of
√
n
(
X̄n − η

)
obtained from 10000 realizations of X n
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Another example: indicator function

Let (Xn)n≥1 be a sequence of IID RV with values in (X ,A ).

For a given A ∈ A , we estimate η = P (X1 ∈ A) by

η̂n =
1
n

n∑

i=1

1Xi∈A.

Direct application of the CLT: ➠ Yi = 1Xi∈A
iid∼ Ber(η)

√
n (η̂n − η)

d−−−→
n→∞

N (0, η(1 − η)) .

Concl.: if 0 < η < 1, then η̂n is asymptotically Gaussian, with
◮ convergence rate: 1√

n
,

◮ asymptotic variance: η(1 − η).
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The continuous mapping theorem

Theorem (Mann-Wald)

Let
◮ h : Rd → Rq a measurable function
◮ Y a random vector, taking values in Rd ,

such that

h is continuous at the point Y , almost surely.

Then, for any sequence (Yn)n∈N∗ of RV with values in Rd ,

(i) Yn
as−→ Y ⇒ h(Yn)

as−→ h(Y ),

(ii) Yn
P−→ Y ⇒ h(Yn)

P−→ h(Y ),

(iii) Yn
d−→ Y ⇒ h(Yn)

d−→ h(Y ).

Proof: see CIP for the case where h is continuous. General case: admit.
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Example: component reliability (cont’d)

Recall that
◮ Xi

iid∼ E(θ), θ > 0, and η = Eθ(X1) =
1
θ .

◮ η̂n = X̄n is obtained by ML and the method of moments.

Law of large numbers (strong and in L2):

η̂n = X̄n
as, L2

−−−→ η.

By the continuous mapping theorem:

θ̂n =
1
η̂n

as−→ 1
η
= θ,

therefore θ̂n is strongly consistent.

Exercise: prove that θ̂n is also consistent the L2 sense.
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Slutsky’s theorem

Theorem
Let
◮ (Xn)n∈N∗ a sequence of random vectors that converges in

distribution to a RV X :

Xn
d−−−→

n→∞
X ,

◮ (Yn)n∈N∗ a sequence of random vectors that converges in
distribution (therefore in probability) to a constant c :

Yn
d−−−→

n→∞
c ,

Then
(Xn,Yn)

d−−−→
n→∞

(X , c).

Remark: Yn
d−−−→

n→∞
c implies Yn

P−−−→
n→∞

c (constant limit).
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Example: component reliability (cont’d)

Recall that (CLT)
√
n
(
X̄n − η

) d−−−→
n→∞

N
(
0, η2).

Since X̄n
as−−−→

n→∞
η (constant), we have by Slutsky’s theorem:

(√
n
(
X̄n − η

)
, X̄n

) d−−−→
n→∞

(Z , η) with Z ∼ N
(
0, η2) .

Therefore, by the continuous mapping theorem,

√
n

(
X̄n − η

)

X̄n

d−−−→
n→∞

Z

η
∼ N (0, 1) ,

since (z , y) 7→ z
y is continuous at any point where y 6= 0.

14/48

Linearization method (“delta method”)

Theorem (“delta theorem”)

Let (Yn)n∈N∗ be a sequence of RV with values in Rd , s.t.

√
n (Yn −m)

d−−−→
n→∞

Z ,

Y a random vector, taking values in Rd and m ∈ Rd .

Then, for any h : Rd → Rq that is differentiable at m,

√
n (h(Yn)− h(m))

d−−−→
n→∞

(Dh)(m)Z ,

where (Dh)(m) is the Jacobian matrix of h at m:

(Dh)(m) =
(
(∂jhi )(m)

)
1≤i≤q, 1≤j≤d

.

Intuition: h(y)− h(m) ≈ (Dh)(m) (y −m).
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Special cases

Gaussian case
If

√
n (Yn −m)

d−−−→
n→∞

N (0, Σ), then

√
n (h(Yn)− h(m))

d−−−→
n→∞

N
(
0, (Dh)(m) Σ (Dh)(m)⊤

)
.

Scalar case
If d = q = 1 and

√
n (Yn −m)

d−−−→
n→∞

Z , then

√
n (h(Yn)− h(m))

d−−−→
n→∞

h′(m) Z .

Remark: if h′(m) = 0, and if h is twice differentiable at m, show that

n (h(Yn)− h(m))
d−−−→

n→∞
1
2
h′′(m)Z 2.

Proof (scalar case)

Consider the function ψ defined by :

ψ(y) =





h(y)− h(m)

y −m
si y 6= m,

h′(m) si y = m;

ψ is continuous at m because h est differentiable at m. Since Yn
d−−−→

n→∞
m,

ψ(Yn)
d−−−→

n→∞
ψ(m) = h′(m),

and thus (Slutsky)

(√
n(Yn −m), ψ(Yn)

) d−−−→
n→∞

(
Z , h′(m)

)
.

Finally, we have

√
n (h(Yn)− h(m)) =

√
n (Yn −m)ψ(Yn)

d−−−→
n→∞

h′(m)Z .
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Example: component reliability (cont’d)

We already saw that
◮ θ̂n = 1/X̄n is a consistent estimator of θ,

◮ √
n
(
X̄n − η

) d−−−→
n→∞

N
(
0, η2), where η = 1

θ .

Using the delta method with h(η) = 1
η , we get

√
n

(
1
X̄n

− θ

)
d−−−→

n→∞
N
(
0, η2 (h′(η)

)2)
,

hence, since h′(η) = − 1
η2 ,

√
n
(
θ̂n − θ

)
d−−−→

n→∞
N
(
0, θ2) .

➠ the estimator θ̂n is asymptotically Gaussian.
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Example: component reliability (cont’d)

Another application: comparing estimators of η = Eθ(X1).

1) For η̂(1) = X̄n, we have (CLT):
√
n
(
η̂(1) − η

) d−−−→
n→∞

N
(
0, η2

)
.

2) For η̂(2) =
√

1
2n

∑n
i=1 X

2
i (see lecture #1) ?

◮ Since E
(
X 2

1
)
= 2η2 et E

(
X 4

1
)
= 24η4, we have (CLT):

√
n
(1
n

n∑

i=1

X 2
i − 2η2

)
d−−−→

n→∞
N
(
0, 20 η4) .

◮ Hence, using the delta method with h(z) =
√

1
2z ,

√
n
(
η̂(2) − η

)
d−−−→

n→∞
N

(
0,

5
4
η2
)
.

Conclusion: η̂(1) is “asymptotically preferable” to η̂(2).

(Actually, it can be proved that η̂(1) is efficient; see comput. of the FIM below).
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Asymptotic comparison of (scalar) estimators
Let η̂n and η̃n be two estimators of η = g(θ) ∈ R,
◮ asymptotically Gaussian.
◮ with asymptotic variances σ2(θ) and σ̃2(θ).

Definition: asymptotically preferable

If
◮ the two estimators have the same convergence rate,
◮ σ2(θ) ≤ σ̃2(θ) ∀θ ∈ Θ,

then we say that

η̂n is asymptotically preferable to η̃n

(“strictly” if ∃θ ∈ Θ such that σ2(θ) < σ̃2(θ)).

Note: comparing vector-valued estimators ⇒ compare matrices. . .
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Asymptotic efficiency
Recall the Cramér-Rao lower bound (scalar parameter)

∀θ̂ regular UE of θ, ∀θ ∈ Θ ,

Rθ

(
θ̂
)
= varθ

(
θ̂
)

≥ 1
n
I−1
1 (θ),

with I1(θ) = varθ (Sθ(X1)).

➠ When equality holds for all θ, the estimator is called efficient.

Asymptotic efficiency

Definition. An estimator is called asymptotically efficient if
◮ it is asymptotically normal at the rate 1√

n
,

◮ with asymptotic variance I−1
1 (θ).

Remark: this definition is valid for the vector-valued case as well, replacing the

variance by the covariance matrix

19/48

Asymptotic efficiency of the MLE

Context: X1,X2, . . .
iid∼ Pθ and, ∀θ ∈ Θ, Pθ admits a pdf fθ.

Definition: regular model

The statistical model is called regular if
◮ conditions C1–C4 hold, (C3 and C4 defined below)

◮ ∀θ ∈ Θ, the Fisher information matrix I1(θ) is positive definite.

Theorem
If the statistical model is regular and if the MLE θ̂n is consistent,
then it is asymptotically efficient :

√
n
(
θ̂n − θ

)
d−−−→

n→∞
N
(
0, I−1

1 (θ)
)
.
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Fisher information in regular models

Reminder. The Fisher information brought by X is the matrix

IX (θ) = varθ(Sθ(X )) = Eθ

(
Sθ(X ) Sθ(X )⊤

)
.

Proposition: another expression for the FIM

In a regular model, we have

IX (θ) = −Eθ

(
∇θ

(
Sθ(X )⊤

))
, (⋆)

In other words : ∀θ ∈ Θ, ∀j ≤ p, ∀k ≤ p,

(IX (θ))j,k = −Eθ

(
∂

∂θj
S
(k)
θ (X )

)
= −Eθ

(
∂2

∂θj∂θk
ln fθ(X )

)
.

Remark: actually, if C1–C3 hold, then C4 and (⋆) are equivalent.
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Example: component reliability (cont’d)

Question: is θ̂n = 1/X̄n asymptotically efficient?

We have already computed the score: Sθ(X1) =
1
θ − X1.

Computation of Fisher’s information (two approaches):

Comput. of Eθ

(
Sθ(X1)

2
)

I1(θ) = varθ(X1) = η2 = 1
θ2

Comput. of −Eθ

(
∂Sθ

∂θ (X1)
)

I1(θ) = −Eθ

(
− 1

θ2

)
= 1

θ2

Conclusion: since
√
n
(

1
X̄n

− θ
)

d−−−→
n→∞

N
(
0, θ2

)
,

θ̂n = 1
X̄n

is asymptotically efficient.

➠ We recover the conclusions of the theorem (C1–C4 hold indeed).
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Regular models: regularity conditions C3 and C4
Reminder: C1 and C2 were defined in Lecture #2.

Regularity condition C3

θ 7→ fθ(x) is twice continuously differentiable for ν-almost all x .

Regularity condition C4

At any point θ ∈ Θ, we have
∫

S
∇θ∇⊤

θ fθ(x) ν(dx) = ∇θ

∫

S
∇⊤

θ fθ(x) ν(dx).

In other words: ∀θ ∈ Θ, ∀k ≤ p, ∀j ≤ p,
∫

S

∂2fθ(x)

∂θk∂θj
ν(dx) =

∂

∂θk

∫

S

∂fθ(x)

∂θj
ν(dx).

Example: an MLE that is not asymptotically Gaussian

Let X1, . . . ,Xn
iid∼ U[0,θ], with θ > 0 unknown.

△! This model is not regular (why?).

It can be proved that (cf. TD1, exercise 1.3)

◮ θ̂n = maxi≤n Xi is the MLE of θ, and

◮ n
(
θ̂n − θ

)
d−−−→

n→∞
−Z with Z ∼ E

(
λ =

1
θ

)
.

In this particular case

➠ the MLE is not asymptotically Gaussian;

➠ the convergence rate is 1
n : faster than 1√

n
.
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Motivation

Problem
A point estimator necessarily makes some estimation error.
How can we “report” this error?

Two approaches:

◮ provide, in addition to the estimated value,
◮ the distribution of the estimator η̂, exact or approximate,
◮ or at least some “measure of dispersion”

(e.g., its standard deviation);

◮ give, instead of a point estimation η̂,

a confidence interval for η.

23/48

Confidence regions and confidence intervals

Recall that η = g(θ). We denote by P(N) the subsets of N = g(Θ).

Definition: confidence region

Let α ∈ ]0, 1[. A confidence region with level (at least) 1 − α for η
is a statistics Iα (X ) taking values in P(N), such that:

∀θ ∈ Θ, Pθ (g(θ) ∈ Iα (X )) ≥ 1 − α.

We say that Iα (X ) is a confidence region with level exactly 1 − α if

∀θ ∈ Θ, Pθ (g(θ) ∈ Iα (X )) = 1 − α.

(Some authors also write: of “size” 1 − α.)

Scalar case: if Iα(X ) is an interval, it is called a confidence interval.
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Example: N (µ, σ2
0) n-sample, with known σ2

0

Since X̄ ∼ N
(
µ,

σ2
0
n

)
, T =

√
n X̄−µ

σ0
∼ N (0, 1), therefore

Pµ

(√
n
X̄ − µ

σ0
∈
[
qα

2
, q1−α

2

])
= 1 − α,

with qr the quantile of order r of the N (0, 1) distribution.

-1.96 0 1.96
0

0.1

0.2

0.3

0.4

95%

2.5% 2.5%

N (0, 1)
CI with level exactly 95%:

[
X̄ − 1.96 σ0√

n
, X̄ + 1.96 σ0√

n

]

9.186 9.81 10.2 10.82

x̄1

x̄2

another one. . .

one realization

µ = 10
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Interpretation: simulations

We simulate 100 realizations with µ = 10 and σ0 = 1.

9 9.5 10.5 11

IC #1

IC #100

µ = 10

In red: realizations where the IC does not contain µ = 10.

➠ The proportion of cases where the CI does not contain µ is (approx.) α.
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Pivotal functions
The method can be formalized using pivotal functions.

Definitions
A function

T : X × N → R

is called pivotal if the distribution of the RV T = T (X , η) does not
depend on θ. We say that the distribution of T (X , η) is free from
the parameter.

Back to the example: X1, . . . ,Xn
iid∼ N (µ, σ2

0) with known σ0.

Then T =
√
n X̄n−µ

σ0
is pivotal since

√
n
X̄n − µ

σ0
∼ N (0, 1).

Remark: we can also choose T =
√
n
(
X̄n − µ

)
∼ N (0, σ2

0).
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Probability refresher: quantiles

Definition: quantile of order r

Let F (x) be the cdf of a probability distribution on R.

For 0 < r < 1, the quantile of order r of the distribution is defined
as:

qr = inf {x ∈ R, F (x) ≥ r} .

Properties:
◮ If F is continuous, then F (qr ) = r .
◮ If, in addition, F is strictly increasing, then qr = F−1(r).
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Quantile function of the N (0, 1) distribution

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
0

0.5

1

0 0.5 1

fX (x) F (x)

qr

x

r

-0.84

-0.84-0.84

0.2

0.2
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How to use pivotal functions
Let T (X , η) be a pivotal function and α ∈ ]0, 1[.

Proposition

Assume that the cdf F of T (X , η) is continuous and strictly
increasing, and denote by qr = F−1(r) the quantile of order r .

Then, for all γ ∈ [0, α] :

I γα (X ) = {η ∈ N such that qγ ≤ T (X , η) ≤ qγ+1−α}
= T−1 (X , [qγ , qγ+1−α])

is a confidence interval for η with level exactly 1 − α.

Proof. Pθ (g(θ) ∈ I γα (X )) = Pθ (qγ ≤ T (X , η) ≤ qγ+1−α)

= F (qγ+1−α)− F (qγ) = 1 − α
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Example: N (µ, σ2
0) n-sample, with known σ2

0

Consider once more the pivotal function

T (X , µ) =
√
n

(
X̄ − µ

)

σ0
∼ N (0, 1).

For all γ ≤ α, we obtain a CI with level (exactly) 1 − α:

I γα =

[
X̄ − σ0√

n
q1−α+γ , X̄ − σ0√

n
qγ

]
,

with qr the quantile of order r of the N (0, 1) distribution.

For instance, with γ = α
2 and α = 0.05:

−q1−α+γ = −q0.975 ≈ −1.96

−qγ = −q0.025 ≈ +1.96
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How to choose γ ?

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

Density of the N (0, 1) distribution and corresponding quantiles
for α = 0.1 and several values of γ (in red: qγ+1−α − qγ).

Usual criterion: value s.t. the CI has minimal length (here γ =
α

2
).
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Example: component reliability (cont’d)

It can be proved that:

T (X , η) =
X̄

η
∼ Γ (n, n) .

Thus, a CI with level exactly 1 − α is :

I γα =

[
X̄

qγ+1−α
,
X̄

qγ

]
,

with qr the quantile of order r of the Γ(n, n) distribution.

Choice of γ: we can take γ = α
2 for simplicity, or search numerically for the

value γ such that the length 1/qγ − 1/q1+γ−α is minimal.
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Example: component reliability (cont’d)

0 q-=0.47954 1 q+=1.7085 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

2.5%

2.5%

Numerical application:

pdf of η̂(1)

η
de

ns
ity

CIexact

η̂(1)

η

Probability density function of the pivotal distribution Γ(n, n)

and corresponding quantiles for α = 0.05 and γ = α
2 .
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Motivation and goal

Problem
It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.
◮ Intervals with “approximate guarantees” will be obtained.
◮ Comput. become easier with the tools that we already have

(CLT, Slutsky, delta method. . . ).

△! Any analysis carried out in an asymptotic setting is

approximate when n is finite.

➠ The results can be poor for small n. . .
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Asymptotic confidence regions (intervals)

We set X n = (X1, . . . ,Xn). Recall that η = g(θ) and N = g(Θ).

Definition: asymptotic confidence region

An asymptotic confidence region with level (at least) 1 − α is a
statistic In,α(X n), with values in P(N), such that

∀θ ∈ Θ, lim
n→∞

Pθ (g(θ) ∈ In,α (X n)) ≥ 1 − α.

(variant: “exactly” if equality holds for all θ.)

Recall that for an “exact” CR with level (at least) 1 − α ,

∀θ ∈ Θ, Pθ (g(θ) ∈ In,α (X n)) ≥ 1 − α

(here, “exact” means “non asymptotic”).
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Asymptotic pivotal function

Definition
A (sequence of) function(s)

Tn : X n × N → R

is an asymptotic pivotal function if the limit distribution of
Tn (X n, η) does not depend on θ :

Tn (X n, η)
d−−−→

n→∞
T∞.

where T∞ is a RV whose distribution is free of θ.

How to use asymptotic pivotal functions:
➠ exactly as we used the non-asymptotic ones !
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Example: component reliability (cont’d)

We already saw that (Slutsky + continuity theorem)

√
n

(
X̄n − η

)

X̄n

d−−−→
n→∞

N (0, 1).

➠ Asymptotic pivotal function :

Tn (X n, η) =
√
n
X̄ − η

X̄
.

➠ Asymptotic CI with level (exactly) 1 − α for η :

In,α =

[(
1 − 1√

n
q1−α

2

)
X̄ ,

(
1 +

1√
n
q1−α

2

)
X̄

]

with qr the quantile of order r of the N (0, 1) distribution.
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Example: component reliability (cont’d)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Numerical application:

valeurs de T = X̄
η

valeurs de Tn =
√
n
(
1 − η

X̄

)

de
ns

ity
de

ns
ity

[
q
Γ(n,n)
α
2

, q
Γ(n,n)
1−α

2

]

[
q

N (0,1)
α
2

, q
N (0,1)
1−α

2

]

△! Do not confuse intervals on pivotal functions
[
qα

2
, q1−α

2

]
and confidence interval for η.
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Example: component reliability (cont’d)

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

η̂
CI
asympt. CI

sample size n

Comparison of exact and asymptotic CIs, as a function of n
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Coverage probability of a confidence interval
Definition
For θ ∈ Θ, the coverage probability of In,α (X n) is defined by

τ cn,θ (In,α (X n)) = Pθ (η ∈ In,α (X n))

10
1

10
2

10
3

10
4

0.86

0.88

0.9

0.92

0.94

0.96

coverage probability
1 − α

sample size n

Ex. “component reliability”: τ cn,θ for the asympt. CI with level 95%

Remark. If In,α (X n) is an asympt. CI with level 1 − α, then :

∀θ, lim
n→∞

τ cθ (In,α(X n)) ≥ 1 − α.
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Exercise 1 (asymptotic distribution)

Let X1, . . . ,Xn
iid∼ E (θ), with θ > 0.

Let η denote the probability of exceeding a given threshold x0 > 0:

η = Pθ(X ≥ x0) = exp (−θx0) .

Questions

1 Study the asymptotic behaviour of the sample mean X̄n.

2 Propose an estimator η̂(1)n as a function of X̄n, using the
substitution method.

3 Study the asymptotic behaviour of η̂(1)n .

4 Let η̂(2)n = 1
n

∑n
i=1 1Xi≥x0 . Is one of the estimators

asymptotically preferable to the other?
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Exercise 2 (exact confidence interval)

Definition: Rayleigh distribution with parameter σ2

X ∼ R
(
σ2) if X admits the pdf f (x) =

x

σ2 exp

(
− x2

2σ2

)
, x ≥ 0.

Let X1, . . . ,Xn
iid∼ R

(
σ2), with σ2 > 0.

Questions

1 Find a pivotal function.

Hint: if X ∼ R(σ2) then Y = X 2 ∼ E
( 1

2σ2

)
.

2 Deduce a confidence interval for σ2 with level 95%.
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Solution of Exercise 1

➊ Appliquant le TCL :

√
n

(
X̄n −

1
θ

)
d−−−→

n→∞
N

(
0,

1
θ2

)

➋ η = exp

(
−x0

1
θ

)
= h

(1
θ

)

avec h : u 7→ exp
(
−x0

u

)
continue sur R∗

+.

Utilisant la méthode de substitution à X̄n estimateur de 1
θ :

η̂
(1)
n = h

(
X̄n

)
= exp

(
− x0

X̄n

)
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Solution of Exercise 1

➌ h est dérivable sur R∗
+ avec h′(u) =

x0

u2 exp
(
−x0

u

)
.

Appliquant le Delta théorème dans le contexte gaussien :

√
n

(
h
(
X̄n

)
− h

(
1
θ

))
d−−−→

n→∞
N

(
h′
(

1
θ

)2 1
θ2

)

Soit :

√
n
(
η̂
(1)
n − η

)
d−−−→

n→∞
N
(
(x0θ exp (−θx0))

2
)

La variance asymptotique de η̂
(1)
n est σ2

1(θ) = (x0θ exp (−θx0))
2
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Solution of Exercise 1

➍ η̂
(2)
n =

1
n

n∑

i=1

Zi avec Zi = 1Xi≥x0 avec
{

Z1, . . . ,Zn IID
Z1 ∼ B(η)

Appliquant le TCL, η̂(2)n est asymptotiquement gaussien :

√
n

(
1
n

n∑

i=1

Zi − E(Z1)

)
d−−−→

n→∞
N (0, var(Z1))

soit

√
n
(
η̂
(2)
n − η

)
d−−−→

n→∞
N (0, η(1 − η))

d−−−→
n→∞

N (exp (−θx0) (1 − exp (−θx0)))

La var. asympt. de η̂
(2)
n est σ2

2(θ) = exp (−θx0) (1 − exp (−θx0))
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Solution of Exercise 1

Soit ∆(θ) = σ2
2(θ)− σ2

1(θ).

∆(θ) = exp (−θx0)
(
1 − exp (−θx0)− x2

0θ
2 exp (−θx0)

)

= exp (−θx0)ϕ(θx0)

avec ϕ(u) = 1 − exp(−u)(1 + u2).

Un tableau de variation de ϕ montre que ϕ > 0 sur R+.

η̂
(1)
n est donc asymptotiquement préférable à η̂

(2)
n .
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Solution of Exercise 1

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Tracés des 2 variances asymptotiques pour x0 = 2.0.
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Corrigé de l’exercice 2

En utilisant l’indication : X 2
i ∼ E

( 1
2σ2

)

Les Xi étant indépendants :

n∑

i=1

X 2
i ∼ Γ

(
n,

1
2σ2

)
(rappel : E (λ) = Γ(1, λ))

➠ T
(
X , σ2) = 1

σ2

∑n
i=1 X

2
i ∼ Γ

(
n, 1

2

)
est pivotale pour σ2.

On en déduit un IC pour σ2 de niveau (exactement) 1 − α :

I
γ=α

2
α =

[
1

q0.975

n∑

i=1

X 2
i ,

1
q0.025

n∑

i=1

X 2
i

]
.

où qr est le quantile d’ordre r de la loi Γ
(
n, 1

2

)

Remarque : en prenant la racine carré, on obtient un IC pour σ
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Lecture 4/10

Bayesian estimation

In this lecture you will learn how to. . .

◮ Introduce the concept of prior information.
◮ Present the basics of the Bayesian approach.
◮ Explain how to construct estimators using prior information.
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Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise
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Recap: comparing estimators

Quadratic risk: Rθ(η̂) = Eθ

(
‖η̂ − g(θ)‖2).

Definition

We will say that η̂′ is (weakly) preferable to η̂ if
◮ ∀θ ∈ Θ, Rθ(η̂

′) ≤ Rθ(η̂),

We will say that it is strictly preferable to η̂ if, in addition,
◮ ∃θ ∈ Θ, Rθ(η̂

′) < Rθ(η̂),

Remarks
◮ The relation “is preferable to” is a partial order on risk functions.
◮ In general there is no optimal estimator, i.e., no estimator that

is preferable to all the others (unless we restrict the class of
estimators that is considered).

5/37

Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions Rθ cannot be compared:

1 the minimax (or “worst case”) approach:

Rmax
(
η̂
)

= sup
θ∈Θ

Rθ

(
η̂
)
,

➠ not discussed in this class;

2 the Bayesian (or “average case”) approach:

RBayes,π
(
η̂
)

=

∫

Θ
Rθ

(
η̂
)
π(dθ),

where π is a probability measure on Θ, to be chosen.

➠ this is the topic of this lecture.
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Example: white balls / red balls (see lecture #1)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

pdf U [0,1]

θ

Measure π: uniform over [0, 1]

θ̂a =

∑n
i=1 Xi + 1
n + 2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6 pdf β(1, 6)

θ

Measure π: β (1, 6)

θ̂b =

∑n
i=1 Xi + 1
n + 7

Observation: θ̂b = n+2
n+7 θ̂a,

➠ the second estimator provides smaller estimates
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Example: white balls / red balls (with n = 10)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

R
θ

( θ̂)

θ

θ̂ = X̄

θ̂ = θ̂a

θ̂ = θ̂b

θ̂ = X̄ θ̂ = θ̂a θ̂ = θ̂b

Rmax

(
θ̂
) 0.025

1

4n

≈ 0.0208
1

4(n + 2)

≈ 0.1246
36

(n + 7)2

(valid for n ≤ 77)

RBayes,π

(
θ̂
)

with π ∼ U [0,1]

≈ 0.0167
1

6n

≈ 0.0162
n + 4

6(n + 2)2

≈ 0.0456
n + 69

6(n + 7)2

RBayes,π

(
θ̂
)

with π ∼ β(1, 6)

≈ 0.0107
3

28n

≈ 0.0129
3n + 22

28(n + 2)2

≈ 0.0089
3n + 42

28(n + 7)2

Exercise: prove the expressions of Rmax and RBayes,π for θ̂ = X̄ .
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The beta family of distributions

Let X ∼ β(a, b) with (a, b) = θ ∈ (R+
⋆ )

2. Its pdf is :

fθ(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 1]0,1[(x).

Moments
◮ expectation : Eθ(X ) = a

a+b

◮ variance : varθ(X ) = ab
(a+b)2(a+b+1)

Special case

◮ U[0,1] = β(1, 1)

Properties

◮ If X ∼ β(a, 1), then − log(X ) ∼ E
( 1
a

)
.

◮ If X ∼ Γ(a, λ), Y ∼ Γ(b, λ), and X ⊥⊥ Y , then X
X+Y ∼ β(a, b).

8/37

Unknown parameter → random variables

We will assume from now on a dominated model: pdf fθ(x).

Consider the Bayesian risk (quadratic, in this case)

RBayes,π
(
η̂
)

=

∫

Θ
Rθ

(
η̂
)
π(dθ)

=

∫

Θ
Eθ

(
‖η̂ − g(θ)‖2) π(dθ).

It can be re-written as :

RBayes,π
(
η̂
)

=

∫∫

X×Θ
‖η̂(x)− g(θ)‖2 fθ(x) ν(dx) π(dθ)︸ ︷︷ ︸

Probability meas. on X ×Θ

.
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Unknown parameter → random variables (cont’d)

Let us introduce a new random variable ϑ, such that

(X , ϑ) ∼ fθ(x) ν(dx) π(dθ). (⋆)

Then the Bayesian risk can be re-written more simply as:

RBayes,π = E
(
‖η̂ − g(ϑ)‖2) ,

where the expectation is, this time, over both X and ϑ.

Bayesian approach

In Bayesian statistics, the unknown parameter θ is (also) modeled
as a random variable.

(Technical remark: the introduction of a new random variable ϑ such that (⋆) holds is always possible, if
we are willing to replace the underlying set Ω by Ω̃ = Ω × Θ, provided that Θ is endowed with a
σ-algebra FΘ such that θ 7→ Pθ(E) is FΘ-measurable for all E ∈ F .)

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise
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Bayesian statistical models

Technical assumptions: we assume from now on that

◮ Θ is endowed with a σ-algebra FΘ. For inst.: if Θ ⊂ Rp, FΘ = B (Θ);

◮ θ 7→ Pθ(E ) is FΘ-measurable for all E ∈ F (σ-algebra on Ω).

Definition
A Bayesian statistical model consists of

◮ a statistical model as previously defined:
(
X , A ,

{
PX
θ , θ ∈ Θ

})
,

◮ a probability distrib. π, called prior distribution, on (Θ, FΘ).

Dominated model → makes it possible to define a likelihood.

11/37

Joint, prior and posterior distributions

Recall that we have introduced a new random variable ϑ, such that

(X , ϑ) ∼ fθ(x) ν(dx) π(dθ). (⋆)

Bayesian vocabulary

We call:
◮ joint distribution the distribution of X and ϑ, that is, (⋆),
◮ prior distribution the marginal distribution Pϑ of ϑ, that is, π,
◮ posterior distribution the distribution Pϑ|X of ϑ given the data.

Interpretation (“subjective Bayes”)

◮ prior distribution → knowledge about θ before data acquisition
◮ posteriori distribution → . . . after data acquisition
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By the way. . . what is the conditional distribution Pϑ|X ?
General definition: beyond the scope of this lecture!

(⇒ uses the notion of kernel)

Assume that (ϑ,X ) has a density with respect to ν ⊗ νΘ, for some
measure νΘ sur (Θ,FΘ).

We will define Pϑ|X=x as the measure with density

f ϑ|X (θ | x) =
f ϑ,X (θ, x)

f X (x)

with respect to νΘ, for all x such that f X (x) > 0.

Then we have, for any mesurable function ϕ s.t. ϕ(ϑ,X ) ∈ L1,

E (ϕ(ϑ,X ) | X )
a.s.
=

∫

Θ
ϕ(θ,X ) f ϑ|X (θ | X ) νΘ(dθ).

13/37

Joint and marginal densities
We will assume† from now on that π admits a pdf
◮ wrt a measure νΘ on (Θ,FΘ), e.g., Lebesgue’s measure,
◮ we will write (abusively): π(dθ) = π(θ) dθ.

Proposition

The joint distribution admits the joint pdf

f (X ,ϑ)(x , θ) = fθ(x)π(θ),

and the corresponding marginal densities are

f ϑ(θ) = π(θ),

f X (x) =

∫
fθ(x)π(θ) dθ.

†: This is not actually an assumption, since we can always use νΘ = π (with the pdf equal to 1).
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Proof

Joint pdf (informal proof)

P(X ,ϑ)(dx , dθ) = fθ(x) ν(dx) π(θ) dθ

= fθ(x)π(θ)︸ ︷︷ ︸
joint pdf

ν(dx) dθ

Marginal densities → we just need to integrate:

f ϑ(θ) =

∫
fθ(x)π(θ) ν(dx) = π(θ),

f X (x) =

∫
fθ(x)π(θ) dθ.
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Likelihood and Bayes’ formula

Recall the conditional density:

f Y |Z (y | z) =
f (Y ,Z)(y , z)

f Z (z)
, ∀z s.t. f Z (z) 6= 0. (⋆)

Proposition

i) The conditional distribution of X given ϑ admits the pdf

f X |ϑ(x | θ) = fθ(x) (“likelihood”).

ii) The posterior distribution (ϑ given X ) admits the pdf :

f ϑ|X (θ | x) =
fθ(x)π(θ)

f X (x)
(Bayes’ formula).

Proof. Simply apply (⋆) to the joint pdf.
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Remark: proportionality

The term 1
f X (x)

plays the role of a normalizing constant:

f ϑ|X (θ | x) =
fθ(x)π(θ)

f X (x)
.

Notation. The symbol “∝” indicates proportionality. Thus,

f ϑ|X (θ | x) ∝ fθ(x) π(θ),

or, less formally,

posterior pdf ∝ likelihood × prior pdf.

The “constant” f X (x) is often difficult to compute, but in some situations the computation can be
avoided (MAP estimator, MCMC numerical methods. . . ).
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Example: white balls / red balls (cont’d)

Reminder: we want to estimate θ = W
W+R from X1, . . . ,Xn

iid∼ Ber(θ).

Density of the observations:

fθ(x) = Πn
i=1θ

xi (1 − θ)1−xi = θN(x) (1 − θ)n−N(x).

with N(x) =
∑n

i=1 xi .

Let us choose a β(a0, b0) prior:

π(θ) ∝ θa0−1 (1 − θ)b0−1 .

(The choice of the prior distribution will be discussed later.)
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Example: white balls / red balls (cont’d)

Then we have:

f ϑ|X (θ | x) ∝ fθ(x)π(θ)

∝ θN(x) (1 − θ)n−N(x) · θa0−1 (1 − θ)b0−1

= θa0+N(x)−1 (1 − θ)b0+n−N(x)−1 .

We recognize (up to a cst) the pdf of the β(an, bn) distrib., with
{
an = a0 + N,

bn = b0 + n − N.

Conclusion. Posterior distribution: ϑ | X ∼ β(an, bn).
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Example: white balls / red balls (cont’d)

0 1

0

0.5

1

1.5

2

2.5

0 1

0

2

4

6

0 1

0

1

2

3

4

0 1

0

2

4

6

replacements

prior pdf
posterior pdf

U[0,1] prior, n = 5

U[0,1] prior, n = 20

β(1, 6) prior, n = 5

β(1, 6) prior, n = 20

x̄x̄

x̄x̄

θθ

θθ

Remark: for n → ∞, we have a E(ϑ | X n) = X̄n + O( 1
n
) with var(ϑ | X n) ≃

θ(1−θ)
n

.

Statistics and Learning Lecture 4/10

116/310



20/37

Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ) = E( 1

η ), hence the likelihood:

L(η, xn) = f (xn | η) =
n∏

i=1

1
η
exp

(
−1
η
xi

)

= η−n exp

(
−1
η

n∑

i=1

xi

)
.

(Here we directly use η as our unknown parameter.)

We choose (see below) a truncated N (η0, σ
2
0) prior for η:

π(η) ∝ exp

(
−(η − η0)

2

2σ2
0

)
1η≥0.
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Example: component reliability (cont’d)

Posterior distribution of η. From Bayes’ formula we get:

p(η | xn) ∝ η−n exp

(
−1
η

n∑

i=1

xi

)

︸ ︷︷ ︸
likelihood

· exp
(
−(η − η0)

2

2σ2
0

)

︸ ︷︷ ︸
prior pdf

.

△! This time we fail to recognize a “familiar” density

➠ numerical evaluation of the integrals

f (xn) =

∫
η−n e−

1
η

∑n
i=1 xi e

− (η−η0)
2

2σ2
0 dη

E (η | X n = xn) =
1

f (xn)

∫
η · η−n e−

1
η

∑n
i=1 xi e

− (η−η0)
2

2σ2
0 dη

Statistics and Learning Lecture 4/10

117/310



22/37

Example: component reliability (cont’d)
Numerical application. η0 = 14.0, σ0 = 1.0 and the true value is η∗ = 11.4.

10
*
=11.4

0
=14.0 17

0

0.5

1

1.5

2

2.5

3

3.5

4

π(η)

p(η | x10)

p(η | x100)

p(η | x1000)

p(η | x10000)

Figure – Prior and posterior densities of η, for four values of n.

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise
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Several approaches

Two kinds of sources of prior information:
◮ “historical” data,
◮ experts: subjective knowledge, field expertise, etc.

Advanced topics (not covered in this course):

◮ merging several sources of prior information,

◮ “weakly informative” or “objective” priors,

◮ least favorable priors (cf. minimax),

◮ . . .
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Example: white balls / red balls (cont’d)

Assume that we have data from a past experiment:
◮ sample of n0 = 20 draws,
◮ N0 = 15 white balls drawn.

Choice of a prior distribution

We can decide, e.g., to choose a β(a0, b0) prior,
with a0 = N0 = 15 and b0 = n0 − N0 = 5.

Arguments in favour of this choice:

◮ the shape of the distrib. makes computations easier (see below);

◮ expectation : a0
a0+b0

= p0, with p0 = N0
n0

;

◮ variance: a0b0
(a0+b0)2(a0+b0+1) ≈

p0(1−p0)
n0

➠ variance of X̄n0 .
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Example: white balls / red balls (cont’d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

θ
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Example: component reliability
We have the following pieces of information:
◮ The manufacturer claims that the lifetime of its components is

approximately η0 = 6 months.
◮ A field expert estimates that the accuracy of the

manufacturer’s data is roughly ε0 = 10%.

Choice of a prior distribution (elicitation)

We can decide, e.g., to choose a N (η0, σ0) prior,
truncated to [0,+∞), with σ0 = ε0η0/1.96.

Arguments in favour of this choice:

◮ The prior is (approx.) centered on the manufacturer’s value η0.

◮ ≈ 95% of the prior probability is supported by the
interval [0.9η0, 1.1η0].

◮ The choice of a Gaussian shape and the value 95% are arbitrary.

Statistics and Learning Lecture 4/10

120/310



27/37

Conjugate priors ➠ easier computations !

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given
statistical model if, for any prior π in this family, the posterior f ϑ|X

remains inside the family.

Examples.
◮ Ber(θ) sample + β prior,
◮ N (µ, σ2) sample with known σ2 + N prior on µ,
◮ N (µ, σ2) sample with known µ + IG† prior on σ2,
◮ E(θ) sample + gamma prior,
◮ . . .

†: inverse gamma. Z ∼ IG if 1/Z has a gamma distribution.

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise
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Bayes estimators

Goal
We want to construct estimators of η = g(θ) taking into account
◮ the data x ,
◮ and the prior distribution π.

29/37

Bayes estimators
Let L : N × N → R be a loss function.
◮ Reminder: we “lose” L(η, η̃) if we estimate η̃ when the true value is η.

Definition: Bayesian estimator

A Bayesian estimator is an estimator that minimizes the posterior
expected loss:

η̂ = argminη̃∈N J(η̃,X )
with

J(η̃, x) = E
(
L
(
g(ϑ), η̃

) ∣∣ X = x
)

=

∫

Θ
L
(
g(θ), η̃

)
f ϑ|X (θ | x) dθ.

(☞ J is well defined for PX -almost all x .)

Remark: equivalently, a Bayesian estimator minimizes the Bayes risk Rπ.
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Quadratic loss

Consider the quadratic loss function L(η, η̃) = ‖η − η̃‖2:

J(η̃, x) =

∫

Θ
‖g(θ)− η̃‖2 f ϑ|X (θ | x) dθ.

Proposition

In this case the Bayesian estimator is

η̂ = E (g(ϑ) | X ) =

∫

Θ
g(θ) f ϑ|X (θ | X ) dθ.

➠ η̂ is the posterior mean of ϑ

Remark: it can also be written as

η̂(x) =

∫
Θ
g(θ) fθ(x)π(θ) dθ

f X (x)
=

∫
Θ
g(θ) fθ(x)π(θ) dθ∫
Θ
fθ(x)π(θ) dθ

.
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Example: white balls / red balls (cont’d)

With a β(a0, b0) prior on ϑ, we have seen that:

ϑ|X ∼ β (N + a0, n − N + b0)

with N =
∑n

i=1 Xi .

The expectation of the β(a, b) distribution is a
a+b , thus:

θ̂ = E (ϑ | X ) =
N + a0

n + a0 + b0
.

Remark: we recover the expressions of θ̂a and θ̂b.
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Another example: Gaussian n-sample (with known σ2)
It can be proved (see PC #4) that X1, . . . ,Xn

iid∼ N (θ, σ2
0)

◮ with θ ∈ R (unknown), σ0 > 0 (known),
◮ and ϑ ∼ N (µθ, σ

2
θ),

then

ϑ | X ∼ N

(
σ2
θ

∑n
i=1 Xi + σ2

0µθ

nσ2
θ + σ2

0
,

σ2
θσ

2
0

nσ2
θ + σ2

0

)

Hence the Bayesian estimator (for the quadratic loss):

θ̂ = λX + (1 − λ) µθ with λ =
nσ2

θ

nσ2
θ + σ2

0

Interpretation
◮ when n → ∞, θ̂ ≈ X̄ (the prior no longer has influence)

◮ with finite n, when
σ0

σθ
≫ 1, θ̂ ≈ µθ (the data is ignored).
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L1 loss

Assume for simplicity that η = θ ∈ R.

Consider the loss function L(θ, θ̃) =
∣∣θ − θ̃

∣∣:

J(θ̃, x) =

∫

Θ

∣∣θ − θ̃
∣∣ f ϑ|X (θ | x) dθ.

Proposition

In this case the Bayesian estimator θ̂ is such that
∫ θ̂

−∞
f ϑ|X (θ | X ) dθ =

∫ ∞

θ̂
f ϑ|X (θ | X ) dθ =

1
2

PX -a.s..

➠ θ̂ is a median of the posterior density of ϑ

Remark: when ϑ has a symmetric posterior density, the two Bayesian
estimators (L1 and L2 loss) coincide.

Example: mean of a Gaussian n-sample, with a Gaussian prior.
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Example: white balls / red balls (cont’d)

Observed sample (n = 5): x = (W ,R ,R ,W ,R).

Prior on η: ϑ ∼ β(1, 6), with θ = P(X1 = W ).

0 1
0

1

2

3

4

5

6

Numerical application

prior pdf: β(1, 6)
posterior pdf: β(3, 9)

θ̂(L1) ≈ 0.2359
θ̂(L2) = 0.25

θ̂(L1) θ̂(L2)

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Warming up exercise
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Exercise (exponential likelihood + gamma prior)

Let X1, . . . ,Xn
iid∼ E(θ) with θ ∈ Θ = (0,+∞).

We endow θ with a Gamma (α0, β0) prior.

Questions

i Show that the gamma priori is conjugate, and find the
parameters αn and βn of the posterior distribution.

ii Give the Bayesian estimator of θ, for the quadratic loss.

iii prove that this estimator tends to the MLE when the
parameters α0 and β0 tend to a certain limit to be specified.
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Solution of exercise 1

Preliminary remark: in this solution we use the same notation, as often done in

practice, for the “deterministic” parameter θ and the corresponding random

variable, denoted by ϑ in the lecture.

i) First write the likelihood:

L (θ; x) = f (x | θ) =
n∏

i=1

θe−θxi = θne−θ
∑n

i=1 xi ,

and the prior density:

π(θ) =
βα0

0
Γ(α0)

θα0−1 e−β0θ ∝ θα0−1 e−β0θ.

The posterior density then follow from the Bayes formula:

f (θ | x) ∝ L (θ; x) π(θ) ∝ θα0+n e−θ(β0+
∑n

i=1 xi)
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Solution of exercise 1 (cont’d)

The distribution of θ given X , aka posterior distribution, is
therefore a gamma distribution with parameters
◮ αn = α0 + n,
◮ βn = β0 +

∑n
i=1 Xi .

ii) The Bayesian estimator for the quadratic loss is given by the
posterior expectation of θ given the data:

E (θ | X ) =
αn

βn
=

α0 + n

β0 +
∑n

i=1 Xi
.

iii) This estimator tends to the MLE 1/X̄n when both α0 and β0

tend to zero.
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Lecture 5/10

Hypothesis testing

In this lecture you will learn how to. . .

◮ make (binary) decisions through hypothesis testing,
◮ choose and construct a test,
◮ define and compute risks of error of the first and second kind.
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Lecture outline

1 – Examples and first definitions
1.1 – Two introductory examples
1.2 – Risks associated to a test

2 – Parametric tests
2.1 – Simple null vs simple alternative
2.2 – Composite hypotheses
2.3 – Asymptotic tests

3 – Testing for goodness of fit
3.1 – Pearson’s χ2 test
3.2 – BONUS: Kolmogorov-Smirnov test

5 – Warming up exercise
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Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ), θ > 0.

Problem
The manufacturer want to propose a one-year warranty. . .

➠ is it a good idea ?

Formalization
The manufacturer considers that it is a “good idea” if:

the return rate is lower than 10%
m

Pθ (X1 ≤ 1) = 1 − exp (−θ) < 0.1
m

θ < θ0 = − ln(0.9)
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Example: component reliability

Therefore, the manufacturer wants to know if θ < θ0 or θ ≥ θ0.

➠ hypothesis to be tested: H0 : θ ≥ θ0

(component quality is not sufficient)

Making (binary) decisions from data

We want to evaluate the “compatibility” between H0 and x :
◮ if a strong incompatiblity is detected,

➠ H0 is rejected (and the warranty proposed);
◮ otherwise, H0 is accepted.

Note the asymmetry between the two scenarios
(H0 = is retained by default)

Hypothesis tests make it possible to formalize this decision making.
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.

◮ X1, . . . ,Xn
iid∼ N (θ, σ2

0) (σ0 known; n = 10, σ0 = 2.5)
◮ hypothesis to be tested → H0 : θ = θ0 (fixed),
◮ alternative hypothesis → H1 : θ = θ1 (fixed, and s.t. θ0 < θ1).

Approach. Making a decision about H0 means estimating if it is
◮ either true ➠ δ = 0,
◮ or false ➠ δ = 1.

Constraint. We want δ to be such that, if θ = θ0 (H0 true),

Pθ0(δ = 1) = 5% (= α).

Intuitive construction of a test: δ = 1X̄>t

◮ where t is such that Pθ0(δ = 1) = Pθ0(X̄ > t) = 5%.
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If H0 is true (θ = θ0)H1 is true (θ = θ1): X̄ ∼ N
(
θ0θ1,

σ2
0
n

)
,

therefore

t = θ0 + q0.95
σ0√
n

where qr is the N (0, 1) quantile of order r .
Pθ1(δ = 0) = Pθ1(X̄ ≤ t) = Φ

(
t−θ1
σ0/

√
n

)

where Φ is the cdf of the N (0, 1) distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

Numerical app.

θ0 t

Pθ0(X̄ > t) = 5%

N
(
θ0,

σ2
0
n

)

σ0√
n

θ0 = 0
t = 1.30

0.6
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If H0 is true (θ = θ0)H1 is true (θ = θ1): X̄ ∼ N
(
θ0θ1,

σ2
0
n

)
,

therefore

t = θ0 + q0.95
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Vocabulary: a first overview

◮ hypothesis H0 : null hypothesis
◮ hypothesis H1 : alternative hypothesis

◮ α : (significance) level at which we want to test
◮ Pθ0(δ = 1) : risk of the first kind (or risk of type I error)
◮ Pθ1(δ = 0) : risk of the second kind (. . . of type II error)
◮ Pθ1(δ = 1) : power of the test

◮ Rδ = {x ∈ X tel que δ(x) = 1} : critical region
(a.k.a. rejection region) of the test

◮ for a test written as: δ(x) = 1 ⇐⇒ T (x) > t,
◮ T is the (scalar) test statistic,
◮ t ∈ R is the critical value of this statistic.

Lecture outline

1 – Examples and first definitions
1.1 – Two introductory examples
1.2 – Risks associated to a test

2 – Parametric tests
2.1 – Simple null vs simple alternative
2.2 – Composite hypotheses
2.3 – Asymptotic tests

3 – Testing for goodness of fit
3.1 – Pearson’s χ2 test
3.2 – BONUS: Kolmogorov-Smirnov test

5 – Warming up exercise
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How to formulate an hypothesis testing problem

Recall that we have a statistical model, which parameterized by θ :

PX =
{
PX
θ , θ ∈ Θ

}
.

Statistical hypothesis

A statistical hypothesis is represented by a subset of PX , and thus
by a subset of Θ.

Notation. Let Θj ⊂ Θ denote the subset representing Hj

➠ Hj : θ ∈ Θj

Parametric / non-parametric test
A testing problem is called parametric if Θ is finite-dimensional.
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How to formulate an hypothesis testing problem (cont’d)

Null hypothesis

We call null hypothesis the hypothesis H0 : θ ∈ Θ0

◮ that we “want to test”, and
◮ that will be retained “by default” unless it is clearly at odds

with the data.

Legal analogy: presumption of innoncence

Alternative hypothesis

We call alternative hypothesis the hypothesis H1 : θ ∈ Θ1

◮ that will be chosen if H0 is rejected.
◮ We assume that Θ1 ∩Θ0 = ∅.

Remark : we can assume wlog that Θ0 ∪Θ1 = Θ.
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Examples of parametric tests

Example 1.

◮ X1,X2, . . . ,Xn
iid∼ E(θ), with θ ∈ Θ = [0,+∞[,

◮ Θ0 = {θ ≥ θ0}; Θ1 = {θ < θ0} with θ0 > 0 a given threshold.

➠ cf. component reliability example.

Example 2. Same example, with :
◮ Θ0 = {θ0} (singleton) ; Θ1 = {θ 6= θ0},
◮ or Θ0 = {θ0}; Θ1 = {θ < θ0}.

Definitions: simple / composite hypotheses

An hypothesis Hj is called simple if Θj is a singleton.
It is called composite otherwise.
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Other examples of (non-parametric) tests

Goodness-of-fit tests for a distribution or family of distributions
◮ see Section 3

Other types of tests
◮ testing the independence of two variables
◮ testing the symmetry of a distribution
◮ . . .
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Test procedures

Definition: test (procedure)

A test is a statistic δ = δ(X ) with values in {0, 1}:

δ : X 7→ {0, 1},

x →
{

0 if H0 is accepted,

1 if it is rejected (in favour of H1).

Definition: critical region of a test

The critical region Rδ of a test δ is the region of rejection

Rδ = { x ∈ X such that δ(x) = 1 } .
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Quantifying the risks of error

Definition: risk of the first kind
We call risk of the first kind, or risk of type I error, the probability
to reject H0 when it is true :

Pθ(δ = 1) = Eθ(δ), θ ∈ Θ0.

(△! This risk depends on the value of θ, for θ ∈ Θ0.)

Definition: risk of the second kind
We call risk of the second kind, or risk of type II error, the
probability to accept H0 when it is false :

Pθ(δ = 0) = 1 − Eθ(δ), θ ∈ Θ1.

(Note the asymmetry of terminology
→ more emphasis is put on H0.)
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Definition: power of a test

We call power the probability to reject H0 when it is wrong:

Pθ(δ = 1) = Eθ(δ), θ ∈ Θ1.

Remark: equal to “1 - risk of type II error”.

Usual approach† for the construction of tests.
Let 0 < α < 1 be a level of risk. We will look for tests s.t.

◮ ∀θ ∈ Θ0, Pθ(δ = 1) ≤ α;
➠ control of the risk of type I errors.

The test δ is said to have level (at most) α.

◮ ∀θ ∈ Θ1, Pθ(δ = 1) “as large as possible”;
➠ capacity to reject H0 when it is false.

Typical values: α = 5%, 1%, 1‰. . . † a.k.a. Neyman’s
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Definition: size of a test
We say that δ has level exactly α, or size α, if

sup
θ∈Θ0

Pθ (δ = 1) = α.

Definition: comparing two tests

Let δ and δ′ be two tests with level (at most) α. We say that δ′ is
uniformly more powerful than δ if

∀θ ∈ Θ1, Pθ

(
δ′ = 1

)
≥ Pθ (δ = 1) .

(Some authors require a strict inequality at one or all θ ∈ Θ1.)

Remarks :

◮ this is a partial order on power functions,

◮ whenever possible, we will look for the uniformly most powerful test at
level α (i.e., a test with α, that is uniformly more powerful than all other
tests with level α).
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Likelihood ratio test

Assume two simple hypotheses : Θ0 = {θ0} et Θ1 = {θ1}.

Denote by L : (θ, x) 7→ L(θ, x) the likelihood function†.

Definition: likelihood ratio test
We call likelihood ratio test the test

δLR =

{
1 if T > t,

0 otherwise,

built using the likelihood ratio statistic:

T =
L(θ1,X )

L(θ0,X )
.

† It can be proved that the family {PX
θ0

, PX
θ1

} is always dominated (ex. facultatif / Radon-Nikodym).
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Fundamental result

Let α ∈ (0, 1).

Theorem: Neyman-Pearson “lemma”

Assume that there exists⊛ a threshold tα such that
◮ the associated LR test δLR has level exactly α

(i.e., has size α).

Then δLR is most powerful† at the level α:
◮ for any test δ̃ with level (at most) α,

δLR is more powerful than δ̃.

➠ The LR test is optimal in this setting.

⊛ Always true if the cdf of T is continuous.
† No need to specify “uniformly” since H1 is simple.
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Back to the Gaussian example

Likelihood ratio test :

T =

1
(
√

2πσ0)n
exp

(
−

∑n
i=1(Xi−θ1)

2

2σ2
0

)

1
(
√

2πσ0)n
exp

(
−

∑n
i=1(Xi−θ0)2

2σ2
0

)

= exp

(
−n(θ2

1−θ2
0)

2σ2
0

)
exp

(
(θ1−θ0)

σ2
0

∑n
i=1 Xi

)
.

θ1 > θ0 therefore δ = 1 ⇐⇒ T > t ⇐⇒ ∑n
i=1 Xi > c

➠ the test that was previously constructed is optimal.
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Test statistic and p-value

The result of a test can be expressed using the concept of p-value.

Definition: p-value

Let T be the test statistic of a test of the form δ = 1T>tα .

Definition. We call p-value the statistic

pval (x) = Pθ0 (T (X ) > T (x))

taking values in (0, 1). △! Function of the data!

Let F0 denote the cdf of T under H0. Then:

pval(x) = 1 − F0(T (x)).
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Interpretation of the p-value
Assume that F0 is continuous and strictly increasing:

∀α ∈ (0, 1), ∃!tα ∈ R, δ = 1T>tα has level exactly α

Proposition

H0 is rejected at the level α ⇔ T > tα ⇔ pval < α.

Interpretation: p-value = measure of the “evidence” against H0.

p-value evidence against H0

pval < 0.01 strong evidence
0.01 ≤ pval < 0.1 weak evidence

0.1 < pval no evidence
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0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

θ0

θ0

θ0

tα

tα

α = 0.4

α = 0.05

α = 0.233

T (x)

T (x)

tα = T (x)

H0 accepted

H0 rejected

H0 accepted: pval = 0.233

(pval is the maximal level α at which H0 is accepted.)
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Proof

Note that tα is, by construction, such that

F0(tα) = 1 − α.

Thus we have

δ = 1 ⇔ T > tα

⇔ F0(T ) > F0(tα) = 1 − α

⇔ pval < α
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Examples of problems with composite hypotheses

Simple null / composite alternative
◮ Θ0 = {θ0} / Θ1 = {θ > θ0} (one-sided test),
◮ Θ0 = {θ0} / Θ1 = {θ 6= θ0} (two-sided test),
◮ . . .

Composite null / composite alternative
◮ Θ0 = {θ ≤ θ0} / Θ1 = {θ > θ0} (one-sided test),

◮ Θ0 = {µ = µ0} / Θ1 = {µ = µ1},
where θ = (µ, σ2) with unknown σ2 (nuisance parameter),

◮ Θ0 = {θ(1) = θ(2)} / Θ1 = {θ(1) 6= θ(2)},
where θ ∈ Θ = R2 (egality of two parameters),

◮ . . .
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Differences with the case of simple hypotheses

◮ Test with level (at most) α, when Θ0 is composite :

∀θ ∈ Θ0, Pθ (δ = 1) ≤ α ⇔ sup
θ∈Θ0

Pθ (δ = 1)
︸ ︷︷ ︸

size of the test

≤ α.

◮ If Θ1 is composite, the power is a function of θ ∈ Θ1 :

Θ1 → [0, 1]
θ 7→ Pθ (δ = 1) .
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Differences with the case of simple hypotheses (cont’d)

◮ Generalized likelihood ratio test
◮ Test statistic :

T (X ) =
supθ∈Θ1

L(θ;X )

supθ∈Θ0
L(θ;X )

.

◮ The test is not, in general, uniformly most powerful (UMP) at
level α.

◮ p-value for a test of the form δ = 1T>tα :

pval = sup
θ∈Θ0

(1 − Fθ(T )) .

where Fθ is the cdf of T under Pθ.
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Back to the Gaussian example / testing the mean

Case 1. H0 : θ = θ0 / H1 : θ = θ1, with θ0 < θ1

◮ Recall the optimal test:
δ(X ) = 1 ⇐⇒ X̄ > tα with tα = θ0 + q1−α

σ0√
n

Analysis of the optimal test δ

◮ δ is the same for any θ1 > θ0 (it only depends on α and θ0);

◮ θ 7→ Pθ(δ = 1) = 1 − Φ
(

tα−θ
σ0/

√
n

)
is increasing, therefore

supθ∈Θ0 Pθ (δ = 1) is attained at θ0 in the following cases:

Case 2. H0 : θ = θ0 / H1 : θ > θ0

Case 3. H0 : θ ≤ θ0 / H1 : θ > θ0

Conclusion on cases 2 and 3
◮ δ has level exactly α,
◮ δ is UMP at the level α.
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Case 4 (two-sided test): H0 : Θ0 = {θ0} / H1 : Θ1 = {θ 6= θ0}

Idea†: use T (X ) =
∣∣X̄ − θ0

∣∣
➠ H0 is rejected when T (X ) > tα, with tα = σ0√

n
q1−α

2
.

0

0.1

0.2

0.3

0.4

0.5

0.6

θ0

N
(
θ0,

σ2
0
n

)

σ0√
n

θ0 = 0
tα = 1.55

pval = 0.47
x̄ = 0.577

tαtα
α
2 = 2.5%α

2

x̄

Numerical application:

† Exercise: Show that this is the generalized LR test when σ2 = σ2
0 is known.

Example: component reliability (cont’d)

Reminder: X1, . . . , Xn
iid∼ E(θ)

H0 : Θ0 = {θ ≥ θ0} (component is not reliable enough)
H1 : Θ1 = {θ < θ0} (component is reliable enough)

Likelihood ratio test.

H0 : Θ0 = {θ0} / H1 : Θ1 = {θ1} with θ1 < θ0

T LR(X ) =
θn1 exp (−θ1

∑n
i=1 Xi )

θn0 exp (−θ0
∑n

i=1 Xi )

=
(
θ1
θ0

)n
exp ((θ0 − θ1)

∑n
i=1 Xi )
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Example: component reliability (cont’d)

Critical (rejection) zone of the LR test at level α:

Rα =
{
x tel que T LR(x) > tLR

α

}
=

{
x tel que T (x) = x̄ > tα

}
.

Reminder : if θ = θ0, then θ0X̄ ∼ Γ(p = n, λ = n).

➠ tα,n = 1
θ0

q1−α

where qr is the Γ(p = n, λ = n) quantile of order r .

Analysis (similar to previous example)
◮ the LR test is the same for any θ1 < θ0,
◮ the function θ 7→ Pθ(δ = 1) is strictly ց.

Summary. The test that we have built is UMP at the level α.

Remark: same principle for any one-sided test on this model.

Example: component reliability (cont’d)

0 20 30
0

0.05

0.1

0.15

θ0 = − log(0.9)

Pθ0(X̄ > tα) = 5%

Γ (p = n, λ = nθ0)

pval = 0.47
x̄ = 10.15

tα

tα = 14.91

n = 10

x̄

Numerical application:

➠ at the 5% level, H0 is not rejected
➠ out of precaution, the manufacturer will not propose a warranty
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Context : X1,X2, . . .
iid∼ Pθ

When distribution of Tn(X n) is hard to determine

➠ use of the limit distribution for n → ∞.

Example: component reliability

Rα,n =
{
xn such thatTn(xn) = x̄n > t∞α,n

}
.

with t∞α,n chosen in such a way that :

lim
n→∞

Pθ0

(
Tn(X n) > t∞α,n

)
= α.

By the CLT under H0 :
√
n
(
X̄n − 1

θ0

)
d−−−→

n→∞
N

(
0, 1

θ2
0

)
, therefore

t∞α,n =
1
θ0

+
1

θ0
√
n
q1−α

where qr is the N (0, 1) quantile of order r .
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Example: component reliability (cont’d)

10
2

10
4

1
θ0

= − 1
log(0.9)

tα,n (exact)

t∞α,n (asympt.)

12

14

16

18

sample size n

tα,n and t∞α,n
computed for α = 0.05
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Goodness-of-fit test for a single distribution

Context: X1,X2, . . .
iid∼ P with unknown P (can be anything);

➠ θ = P, Θ = { probability distributions on (R,B(R)) }.

Statistical hypotheses to be tested

For a given probability P0, we consider the hypotheses:

H0 : P = P0

H1 : P 6= P0

Component reliability example:

◮ The component manufacturer knows, from past analyses, that the
component lifetimes should follow a E(θ0) distribution.

◮ In order to check that the production line is still properly working, he
wants to test if H0 : P = E(θ0) is still true.
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Pearson’s χ2 test statistic
Let (A1, . . . ,AK ) be a partition of P0’s support, and
◮ N = (N1, . . . ,NK ) with

Nk =
∑n

i=1 1Ak
(Xi ) → observed frequencies (counts),

◮ p = (p1, . . . , pK ) with
pk = P0 (X1 ∈ Ak) → npk = expected frequencies

under H0.

Proposition

Under hypothesis H0, N follows a multinomial Multi(n, p)
distribution, and

Tn =
K∑

k=1

(Nk − npk)
2

npk

d−−−→
n→∞

χ2(K − 1)

.
(χ2 distribution with K − 1 degrees of freedom)
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Pearson’s chi-squared test (χ2)

Recall that we want to test H0 : P = P0 against H1 : P 6= P0.

Chi-square (χ2) goodness-of-fit test

Let 0 < α < 1 and let T denote Pearson’s statistic:

T =
K∑

k=1

(Nk − npk)
2

npk
.

The chi-squared (χ2) test is

δ = 1T>tα ,

where tα is the χ2(K − 1) quantile of order 1 − α.

△! In practice: choose A1, . . . ,AK such that npk ≥ 5, ∀k .
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The multinomial family of distributions

Parameters
◮ n integer, ≥ 1,

◮ K integer, ≥ 2 and p ∈ (R+
⋆ )

K such that
∑K

k=1 pk = 1.

Let n1, . . . , nK entiers ≥ 0 such that
∑K

k=1 nk = n :

If N ∼ Multi(n, p), P (N1 = n1, . . . ,NK = nk) =
n!

n1! . . . nK !
pn1

1 . . . pnKK

Moments
◮ expectation : Ep(N) = np

◮ covariance matrix : covp(Ni ,Nj) = n(piδij − pipj)

Marginal distributions

◮ Marginal distributions are binomial : Nj ∼ B(n, pj).

The χ2 family of distributions

Parameters

◮ q integer, ≥ 1 : number of “degrees of freedom”.

Definition. If Y1, . . . ,Yq
iid∼ N (0, 1) then

T =
∑q

k=1 Y
2
k ∼ χ2(q)

The χ2 distribution is a special case of the Γ distribution :

χ2(q) = Γ

(
p =

q

2
, λ =

1
2

)

➠ The properties of the χ2 follow from those of the Γ distribution.

Expectation

◮ Eq(T ) = q

Variance
◮ varq(T ) = 2q
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Goodness-of-fit test to a family for distributions
Component reliability example
Goal: test if the lifetimes are exponentially distributed.

➠ Null hypothesis H0: ∃θ > 0, P = Pθ = E(θ).

Two-step approach

1 Estimate θ from the data → θ̂.

2 Test the goodness of fit to Pθ̂.

Details
p̂k = Pθ̂ (X1 ∈ Ak)

T (X n) =
K∑

k=1

(Nk − np̂k)
2

np̂k

d−−−→
n→∞

χ2(K − 1− q) with q = card(θ)

H0 is rejected if T (xn) > tα

with tα the χ2(K − 1 − q) quantile of order 1 − α.
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Example: component reliability

0 3 6 9 12 15 18 24 30
0

5

10

15

20

25

Observed frequencies Nk

Expected frequencies np̂k

x

fr
eq

ue
nc

ie
s

class [0, 3[ [3, 6[ [6, 9[ [9, 12[ [12, 15[ [15, 18[ [18, 24[ [24,∞[

Nk 19 23 12 4 9 7 14 5
np̂k 22.0 17.2 13.4 10.4 8.14 6.35 8.82 5.36

T (X n) =
8∑

k=1

(Nk − np̂k)
2

np̂k

d−−−→
n→∞

χ2(8 − 1 − 1)

Statistics and Learning Lecture 5/10

156/310



36/43

Numerical application. n = 100, T (xn) = 9.75

0 3 6 15 18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

χ2(6) pdf

Numerical application
T (xn) = 9.75
pval = 0.14

T (xn)

= 9.75

α = 5%

tα
= 12.6

➠ at the 5% level, H0 is accepted
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Goodness-of-fit test for a single distribution : H0 : P = P0.

Kolmogorov-Smirnov distance

We call Kolmogorov-Smirnov distance the quantity

Dn = sup
x

∣∣∣F̂n(x)− F0(x)
∣∣∣ ,

with F0 the cdf of P0 and F̂n empirical cdf ➠ F̂n(x) =
1
n

∑n
i=1 1{Xi≤x}.

Kolmogorov-Smirnov test

Under the null hypothesis H0, if F0 is continuous:

T (X n) =
√
nDn

d−−−→
n→∞

K,

where K is the Kolmogorov-Smirnov distribution.

➠ H0 is rejected if Tn > tα, with tα the (1 − α)-quantile of K.
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Example: component reliability
H0 : P = E(θ0) with θ0=0.1

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

F̂ (x)

F0(x)

Dn = supx |F̂ (x)− F0(x)|

n = 30
Dn = 0.13
√
nDn = 0.71

x

Numerical application
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Example: component reliability (cont’d)

0 1.8 2.4
0

0.5

1

1.5

2

pdf of the K distribution

Numerical application√
nDn = 0.71

pval = 0.69

T (xn)

= 0.71

α = 5%

tα
= 1.36

➠ at the 5% level, H0 is accepted

Lecture outline

1 – Examples and first definitions
1.1 – Two introductory examples
1.2 – Risks associated to a test

2 – Parametric tests
2.1 – Simple null vs simple alternative
2.2 – Composite hypotheses
2.3 – Asymptotic tests

3 – Testing for goodness of fit
3.1 – Pearson’s χ2 test
3.2 – BONUS: Kolmogorov-Smirnov test

5 – Warming up exercise

Statistics and Learning Lecture 5/10

159/310



40/43

Exercise (Hypothesis test for a proportion)

In the context of a coin toss game, we want to test if the coin is
balanced.

Questions

i Propose a statistical experiment to test this hypothesis.
Specify the underlying statistical model, and define the null
and alternative hypotheses.

ii Propose a test at the asymptotic level α.
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Solution of Exercise 1

i) on réalise n expériences de "pile ou face" dont les issues sont
modélisées par n variables aléatoires X1, . . . ,Xn indépendantes et
identiquement distribuées selon une loi de Ber(θ).
We want to test if

H0 : θ =
1
2
, c’est-à-dire Θ0 =

{
1
2

}
(hypothèse simple),

vs.

H1 : θ 6= 1
2

donc Θ1 =

]
0,

1
2

[
∪
]
1
2
, 1
[

(hypothèse bilatère).

On parle de test bilatère.
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Solution of Exercise 1 (suite)

ii) Posons θ̂n = X̄n, la moyenne empirique de l’échantillon. Par
application directe du TCL, il vient que :

θ̂n − θ√
θ(1 − θ)/n

d−−−→
n→∞

N (0, 1)

Pour construire un test asymptotique bilatéral de niveau α, on se
place sous H0. Il vient la convergence en loi suivante:

2
√
n

(
θ̂n −

1
2

)
d−−−→

n→∞
N (0, 1).

On considère une zone de rejet de la forme: 2
√
n|θ̂n − 1

2 | > cα.

où cα est choisi en fixant le risque de première espèce à α.
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Solution of Exercise 1 (suite)

ii) Let

lim
n→∞

P(2
√
n|θ̂n −

1
2
| > cα) = α.

On en déduit que cα = q1−α
2
, quantile d’ordre 1− α

2 d’une N (0, 1).

On rejette l’hypothèse H0 au profit de H1 au risque α de se
tromper dès que:

|θ̂n −
1
2
| > q1−α

2

1
2
√
n
.

Ainsi l’écart entre θ̂n et 1/2 est considéré comme significatif au
risque α dès qu’il est supérieur à q1−α

2
1

2
√
n
.
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Lecture 6/10

Introduction to supervised learning
Linear models for regression

In this lecture you will learn how to. . .

◮ explain the basic concepts of statistical learning
◮ set up the mathematical framework for regression and

classification problems
◮ build & use linear regression models
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Lecture outline

1 – Introduction to (supervised) statistical learning
1.1 – Statistical learning
1.2 – The mathematical framework of supervised learning

2 – Linear regression
2.1 – Introduction to regression models
2.2 – Linear model / quadratic loss
2.3 – Back to statistical inference
2.4 – Other loss functions
2.5 – Limitations of “ordinary least squares”
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Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.” → data !

(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54–64)

Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of AI and Design.
https://www.autodesk.com/redshift/machine-learning/
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Statistical learning: a “disciplinary” point of view

Computer science

Artificial intelligence (AI)

Machine learning

Mathematics
(“mathematical sciences”)

Statistics

Statistical learning
(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”
(apprentissage statistique) are often used interchangeably.
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Example: handwritten character recognition

A subset of the MNIST database
containing 70 000 b&w images† of size 28 × 28 pixels

Supervised learning problems: examples are provided with a label.

➠ Learn to classify a new image in one of the 10 classes.

† 60 000 training examples and 10 000 test examples → http://yann.lecun.com/exdb/mnist/
(to this day, the best error rates achieved on this problem are about 0.2%)
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Example: real estate pricing in Ames (Iowa)

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

➠ Learn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques)
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Several forms of learning

◮ Supervised learning: examples with labels.
◮ analogy: learning with a teacher.

➠ lectures #6 to #9

◮ Unsupervised learning: examples without labels
◮ analogy: learning without a teacher, discovery

➠ lecture #10

and also. . . (not covered in this course)

◮ Active learning
◮ the labels are queried sequentially;
◮ example: detection of bank frauds

→ in-depth analysis of “suspicious” cases only.

◮ Reinforcement learning. . .
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Numerous fields of application

◮ Computer vision
◮ Speech recognition
◮ Natural Language Processing (NLP)
◮ Fraud detection
◮ Personalized medicine
◮ Recommender systems & targeted marketing
◮ . . .

Lecture outline

1 – Introduction to (supervised) statistical learning
1.1 – Statistical learning
1.2 – The mathematical framework of supervised learning

2 – Linear regression
2.1 – Introduction to regression models
2.2 – Linear model / quadratic loss
2.3 – Back to statistical inference
2.4 – Other loss functions
2.5 – Limitations of “ordinary least squares”
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ML vocabulary: instance space and label space

Instance space: X
◮ instances x1, . . . , xn ∈ X

Label space: Y
◮ labels y1, . . . , yn ∈ Y

MNIST example:

Class: zero, one, . . . nine

X = {0, 1}28×28 Y = {“zero” , . . . , “nine”}

In this and the following lectures, we will always assume:

X = Rp Y = R → regression, or
Y = {0, 1} → classification†.

† more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST). . .
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Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

(X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y

where PX ,Y is an unknown probability measure on X × Y.

ii) Unless explicitely mentioned, we make no assumption on the
distribution: θ = PX ,Y and Θ = {probability measures on X × Y}.

Notation. We denote by (X ,Y ) another pair of RVs, which follows the
same distribution PX ,Y but is not observed.

△! change of notation (wrt previous lectures)

➠ observations: Xi ∈ X → (Xi ,Yi ) ∈ X × Y
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Goal

Goal of supervised learning (informally)

We want to “learn” from data† a prediction function‡

ĥ : X → Y
x 7→ y = ĥ(x)

such that the RVs Y and ĥ(X ) are as “close” as possible.

† We should write ĥ(x) = ĥ(x ; (X1,Y1), . . . , (Xn,Yn)). . .
‡ If Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L : Y × Y → R+

(y , ỹ) 7→ L(y , ỹ).

➠ L(y , ĥ(x)) quantifies the loss when y is predicted by ĥ(x).
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Goal (cont’d)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) = E (L(Y , h(X ))) ,

where the expectation is with respect to (X ,Y ).

△! This risk depends on the unknown distribution θ = PX ,Y :

Rθ(h) =

∫∫

X×Y
L(y , h(x)) PX ,Y (dx , dy).

➠ From now on, we will simply write R(h).
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Goal (cont’d)
The optimal prediction function depends on the unknown
distribution PX ,Y :

h⋆ = h⋆(PX ,Y ) = argminh R(h).

(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X1,Y1), . . . , (Xn,Yn), a prediction
function

ĥ : X → Y
x 7→ y = ĥ(x)

such that the risk R(ĥ) is as close as possible to the optimal risk

R⋆ = inf
h
R(h)

(also called “Bayes risk”).

Lecture outline
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Regression

We consider in the rest of this lecture the regression case: Y = R.

Francis Galton (1886). “Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246–263.

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:

L(y , ỹ) = (y − ỹ)2.

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is

∀x ∈ X , h⋆(x) = E(Y |X = x).

Vocabulary : x 7→ E(Y |X = x) is sometimes called “regression function”.

We will consider this loss function until further notice.
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Quadratic loss (cont’d)

Proof. By the law of total expectation, we get:

R(h) = E


E

(
(Y − h(X ))2 | X

)

︸ ︷︷ ︸
⊛


 .

Le term ⊛ can be decomposed as :

E
(
(Y − h(X ))2 | X

)

= E
(
(Y−E(Y | X ) + E(Y | X )− h(X ))2 | X

)

= var(Y | X ) + (E(Y | X )− h(X ))2 .

The first term does not depend on h, and the second one is
minimal when h(X ) = E(Y | X ) a.s..
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Empirical risk

Recall that the joint distribution PX ,Y is unknown

➠ the risk R(h) cannot be computed.

Definition: empirical risk

We call empirical risk the risk

R̂n(h) =

∫∫

X×Y
L(y , h(x)) P̂n(dx , dy) =

1
n

n∑

i=1

L(Yi , h(Xi ))

associated to the empirical measure P̂n = 1
n

∑n
i=1 δXi ,Yi

.

With the quadratic loss :

R̂n(h) =
1
n

n∑

i=1

(Yi − h(Xi ))
2 .
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Empirical risk minimization
A general learning method:

1 Choose a family H of prediction functions.

2 Select the function h which minimizes the empirical risk:

ĥERM = argminh∈H R̂n(h).

Example: “linear” (affine) prediction functions

H =
{
h : Rp → R

∣∣∣ ∃β ∈ Rp+1, ∀x ∈ X ,

h(x) = β0 + β1x
(1) + . . .+ βpx

(p)
}

△! the ERM method is reasonable if H is “not too large”

➠ otherwise, complex models must be penalized (more on this later)
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Other examples of families of prediction functions

◮ linear models with general basis functions

h(x) = β1h1(x) + . . .+ βKhK (x),

where the functions hk : X → R are known;

◮ additive models

h(x) = h1(x
(1)) + . . .+ hp(x

(p)),

where the hk ’s belong to a given family of R → R functions;

◮ neural networks,
◮ decision trees,
◮ generalized linear/additive models
◮ . . .

Lecture outline
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Residual sum of squares
We consider prediction functions h of the form :

h(x) = β0 + β1x
(1) + . . .+ βpx

(p) = β⊤x

with β =




β0

β1
...
βp


 and x =




1
x (1)

...
x (p)


.

Definition: RSS / least squares criterion

Empirical risk: R̂(h) = 1
n

∑n
i=1

(
Yi − β⊤Xi

)2.

We define the Residual Sum of Squares (RSS):

RSS(β) =
n∑

i=1

(
Yi − β⊤Xi

)2

or least squares criterion.
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Matrix-vector notations

Let X =




1 X
(1)
1 . . . X

(p)
1

1 X
(1)
2 . . . X

(p)
2

...
...

1 X
(1)
n . . . X

(p)
n




and Y =




Y1

Y2
...
Yn


.

➠ X has size n × (p + 1) and Y has length n.

Matrix form of the criterion

RSS(β) = ‖Y − Xβ‖2

= (Y − Xβ)⊤ (Y − Xβ)

= β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y
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Minimization of the least squares criterion

Assumption

We assume X⊤X almost surely invertible

➠ implies p + 1 ≤ n.

Let β̃ =
(
X⊤X

)−1
X⊤Y . Then:

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y
= (β − β̃)⊤X⊤X (β − β̃) + c

where c is a constant (i.e., does not depend on β).

Indeed: β̃⊤X⊤Xβ = Y⊤X
(
X⊤X

)−1
X⊤Xβ = Y⊤Xβ.
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Minimization of the least squares criterion

Reminder : RSS(β) = (β − β̃)⊤X⊤X (β − β̃) + c.

We have:

(i) ∀a ∈ Rp+1, a⊤X⊤Xa = ‖Xa‖2 ≥ 0,

(ii) X⊤X is invertible, hence positive definite.

(i) implies that RSS(β) is minimal at β̃;

(ii) implies that the minimizer is unique (a⊤X⊤Xa = 0 =⇒ a = 0).

Proposition: least squares estimator

When X⊤X is invertible,

β̂ =
(
X⊤X

)−1
X⊤Y

is the unique minimizer of the RSS (least squares criterion).
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Matrix calculus
The result can also be found using matrix calculus.

Let v ∈ Rq, z ∈ Rq and M ∈ Rq×q.

1) differentiation of h(z) = v⊤z =
∑q

j=1 vjzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




v1
...
vq


 = v therefore ∇z

(
v⊤z

)
= v .

2) differentiation of h(z) = z⊤Mz =
∑p

i ,j=1 ziMi ,jzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




∑q
j=1 M1,jzj +

∑q
i=1 Mi,1zi

...∑q
j=1 M1,jzj +

∑q
i=1 Mi,1zi




therefore ∇z

(
z⊤Mz

)
= (M +M⊤)z .

Matrix calculus (cont’d)

Application to the minimization of the least squares criterion.

Recall that

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y

Thus we have

∇β RSS(β) = 2X⊤Xβ − 2X⊤Y = 2
(
X⊤Xβ − X⊤Y

)
,

and finally:

∇βRSS(β̂) = 0 =⇒ β̂ =
(
X⊤X

)−1
X⊤Y .
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Goodness of fit
Without explanatory variables, we would have

ĥ(x) = β̂0, with β̂0 = Ȳ =
1
n

n∑

i=1

Yi .

Let us set TSS =
∑n

i=1
(
Yi − Ȳ

)2 → Total Sum of Squares.

Definition: coefficient R2 of determination

Reminder : RSS(β) =
∑n

i=1
(
Yi − β⊤Xi

)2. We set :

R2 = 1 − RSS(β̂)
TSS

.

Properties.
◮ 0 ≤ R2 ≤ 1,
◮ if R2 = 1, then ∀i , Yi = β̂Xi .
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“Ozone” example: presentation of the data

variable description
O3obs concentration of ozone on day t + 1
MOCAGE pollution prediction obtained by a deterministic

computation fluid dynamics (CFD) model
TEMPE MétéoFrance temperature forecast for day t + 1
RMH2O humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t

VentMOD wind strength on day t

VentANG wind orientation of day t

Learning task
◮ predict the ozone concentation on day t + 1

from data available on day t

◮ predict if the concentration will exceed 150µg/m3

(classification task, cf. lecture #7).

Application and data obtained from https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone
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“Ozone” example: data visualization

28/41

“Ozone” example: linear regression

Linear regression using n = 210 days of data.
Remark. All variables centered and normalized for the sake of interpretability.

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

Coefficient of determination. R2 = 65.7%

50 100 150 200 250

50

100

150

200

250

yi

ŷ i
=

β̂
⊤
x i

Observations:

◮ the negative coefficient associated
to NO2 is surprising
(but NO2 is correlated with NO);

◮ RMH2O, VentMOD and VentANG
appear to be of lesser importance;

◮ the model explains partly the data.

Statistics and Learning Lecture 6/10

183/310



Lecture outline

1 – Introduction to (supervised) statistical learning
1.1 – Statistical learning
1.2 – The mathematical framework of supervised learning

2 – Linear regression
2.1 – Introduction to regression models
2.2 – Linear model / quadratic loss
2.3 – Back to statistical inference
2.4 – Other loss functions
2.5 – Limitations of “ordinary least squares”
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Properties of the least squares estimator

Recall that, until now: (X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y .

➠ in the section, we assume instead deterministic Xi ’s
(equivalently, we work “conditionally on the Xi ’s”).

Assume moreover that

(i) ∀i , Yi = β⊤Xi + ǫi

where the errors ǫi are

(ii) centered: E(ǫi ) = 0,

(iii) uncorrelated: i 6= j ⇒ cov(ǫi , ǫj) = 0,

(iv) homoscedastic: var(ǫi ) = σ2 for some σ2 > 0.
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Properties of the least squares estimator

Proposition

Under these assumptions, β̂ is an unbiased estimator:

E
(
β̂
)

= β,

and its covariance matrix is:

var
(
β̂
)

= σ2
(
X⊤X

)−1
.
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Properties of the least squares estimator

Proof.

Recall that the Xi ’s are assumed deterministic.

Let ǫ = (ǫ1, . . . , ǫn)
⊤. Then:

(i) ⇒
{

Y = Xβ + ǫ

β̂ =
(
X⊤X

)−1
X⊤Y = β +

(
X⊤X

)−1
X⊤ǫ

(ii) ⇒ E
(
β̂
)
= β +

(
X⊤X

)−1
X⊤ E (ǫ) = β

(iii)+(iv) ⇒ var
(
β̂
)

=
(
X⊤X

)−1
X⊤ var (ǫ) X

(
X⊤X

)−1

= σ2 (X⊤X
)−1
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Distribution of (β̂, σ̂2) under a normality assumption
Assume furthermore that (v) ǫ is Gaussian:

logL(β, σ2;Y ) = −n

2
log(2πσ2) − 1

2σ2

n∑

i=1

(
Yi − β⊤Xi

)2
.

Proposition: MLE of (β, σ2) (see PC)

The MLE is





β̂ = argminβ
∑n

i=1
(
Yi − β⊤Xi

)2
,

σ̂2 = 1
n

∑n
i=1

(
Yi − β̂⊤Xi

)2
.

➠ We recover the least square estimator of β

Student’s theorem: distribution of (β̂, σ̂2) (see PC)

◮ β̂ ∼ N
(
β, σ2 (X⊤X

)−1
)
,

◮ σ̂2 ∼ σ2

n χ2(n − p − 1),

◮ β̂ et σ̂2 are independent.
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Tests / CI on the value of a component of β

We know that β̂j ∼ N
(
βj , σ

2vj
)

with vj =
[(
X⊤X

)−1
]
j ,j

.

Pivotal function

T =
β̂j − βj√

n σ̂2vj
n−p−1

∼ T (n − p − 1)

with T (n − p − 1): Student distrib. with n − p − 1 degrees of freedom
(➠ defined on next page)

Remark:
n σ̂2

n − p − 1
=

1
n − p − 1

n∑

i=1

(
Yi − β̂⊤Xi

)2

is an unbiased estimator of σ2 (see PC).

Statistics and Learning Lecture 6/10

186/310



The Student family of distributions

Definition of T (k), k integer ≥ 1
Let U and V be two RVs such that

◮ U ∼ N (0, 1)

◮ V ∼ χ2(k)

◮ U and V are independent

then T = U√
V
k

follows a Student distribution with k degrees of freedom.

Properties
T (k)

d−−−→
k→∞

N (0, 1)

Exercise : prove it.

Probability density function

f (x) =
1√
kπ

Γ( k+1
2 )

Γ( k2 )

(
1 +

x2

k

)− k+1
2

Mean
◮ for k ≥ 2, Ek(T ) = 0

Variance
◮ for k ≥ 3, vark(T ) = k

k−2
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Proof

It follows from Student’s theorem that
◮ U =

β̂j−βj

σ
√
vj

∼ N (0, 1)

◮ V = n σ̂2

σ2 ∼ χ2(n − p − 1),
◮ and U and V are independent.

Thus

T =
β̂j − βj√

n σ̂2vj
n−p−1

=
U√
V

n−p−1

∼ T (n − p − 1)

by definition of Student’s distribution with k = n− p− 1 degrees of
freedom.
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Test for H0 : βj = 0 / H1 : βj 6= 0
Let 0 < α < 1.

Take βj = 0 in the def. of T (i.e.
assume H0) and

δ = 1|T |>q1−α
2

-2.57 0 2.57
0

0.1

0.2

0.3

0.4

95%

2.5% 2.5%

T (5) pdf

Exact confidence interval for βj

[
β̂j −

√
n σ̂2vj

n − p − 1
q1−α

2
, β̂j +

√
n σ̂2vj

n − p − 1
q1−α

2

]

qr : quantile of order r of T (n − p − 1)
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“Ozone” example: CIs and p-values

CI95% t pval
β0 [100.1, 106.7] 62.9 < 10−6

MOCAGE [21.1, 36.8] 7.4 < 10−6

TEMPE [16.5, 28.5] 7.6 < 10−6

RMH2O [−7.0, 0.6] -1.7 0.095
NO2 [−53.0, −15.7] -3.7 < 10−3

NO [19.8, 55.4] 4.2 < 10−3

VentMOD [−2.7, 5.4] 0.7 0.49
VentANG [−0.8, 6.0] 1.6 0.12

with t: realized valued of T for the corresponding coefficient

Remark: regression without RMH2O, VentMOD et VentANG

➠ the coefficient of determination drops from 65.7% to 64.5%.
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“Ozone” example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted (approx. 2%).

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 103.4 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with 125.2 79.2 -15.6 24.2 -155.1 141.4 4.7 24.9

➠ Strong sensitivity of the coefficients to “outliers”.

Solution
Use a loss function that leads to a prediction function with better
robustness properties than the quadratic loss.
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Usual loss functions

1

2

3

4

ǫ−ǫ δ−δ
0

0
y − ỹ

L2 (quadratic) loss
L1 loss
Huber’s loss
ǫ-insensitive loss
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L1 loss

Loss function : L(y , ỹ) = |y − ỹ |.

Proposition (see PC)

For the L1 loss, the optimal prediction function is

∀x ∈ X , h⋆(x) = med(Y |X = x)

“Ozone” example
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 100.8 27.5 19.2 -3.3 -32.2 33.9 -1.0 3.9
with 101.4 28.3 18.6 -1.6 -35.1 37.5 0.5 3.2

➠ better stability with respect to outliers.
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Limitations of “ordinary least squares”
Recall that X has size #individuals ×#variables (n × (p + 1)).

Critical cases for “ordinary least squares”
◮ when X⊤X not invertible,
◮ or poorly conditioned.

Typical cases

◮ when the number of variables is large
(p + 1 > n, sometimes p ≫ n)

Example: genomics.

◮ when there are strong correlations between explanatory
variables

Example: “ozone” data (cf. variables NO and NO2)
➠ lack of interpretability of the coefficients
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

β̂ = argmin
β

RSS(β)︸ ︷︷ ︸
data “fidelity”

+ λ︸︷︷︸
hyperparameter

Ω(β)︸ ︷︷ ︸
penalty

.

➠ see Lecture 8/10
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Chapter 7

Classification: logistic regression
Generalization error

195/310



1/34

Statistics and Learning

Arthur Tenenhaus†, Julien Bect & Laurent Le Brusquet

(firstname.lastname@centralesupelec.fr)

Teaching: CentraleSupélec / Department of Mathematics

Research: Laboratory of signals and systems (L2S)
†: Course coordinator

2/34

Lecture 7/10

Classification: logistic regression.
Generalization error.

In this lecture you will learn how to. . .

◮ Classify using logistic regression
◮ Define relevant performance measures for classifiers
◮ Estimate the risk (generalization error)

in a regression or classification problem
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Lecture outline

1 – Classification: logistic regression
1.1 – Introduction
1.2 – Linear models for classification
1.3 – Estimation of the parameter β
1.4 – Performance evaluation & choice of δ0
1.5 – Extensions

2 – Estimation of the risk (generalization error)
2.1 – Problem
2.2 – Zoom on an illuminating special case
2.3 – Training set and test set
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Mathematical framework and objectives

Notations
◮ (X1,Y1), . . . , (Xn,Yn)

iid∼ PX ,Y

◮ PX ,Y : unknown distribution on X × Y
◮ X ⊂ Rp, Y = {0, 1, . . . ,K − 1}
◮ unless otherwise stated: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h : x 7→ {0, 1}.

Synonyms: classification function, or “classifier”.

Objectives of this section
◮ present the logistic regression method
◮ define relevant risk measures for classification
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Example with two explanatory variables (p = 2)

-1 0 1 2 3
-2

-1

0

1

2

3

“Negative” label (0)
“Positive” label (1)

x (1)

x
(2
)
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A taste of things to come: a possible classifier

-1 0 1 2 3
-2

0

2

4

“Negative” label (0)
“Positive” label (1)
Boundary between h = 0 and h = 1

x (1)

x
(2
)
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Logistic regression: a classification method !?!

△! Despite the name “regression”,
it is actually a classification method!

Explanation:

◮ it is indeed a regression method, since it focuses on the regression
function x 7→ E (Y | X = x),

◮ but the label Y is assumed binary, and thus the goal is actually to
address (binary) classification problems.
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Logistic regression: principle

Remark: if PY |X were known, we could compute, for a given loss
function, the optimal classification function:

h⋆ = argminh E (L(Y , h(X )))

⇔ h⋆(x) = argmint∈Y E (L(Y , t) | X = x) PX -pp.

General principle

◮ approximate PY |X using a parametric model PY |X
β ,

◮ then deduce the classification function from the model.

Here Y = {0, 1}, therefore
◮ Y |X ∼ Bernoulli(p(X )) with p(x) = P(Y = 1|X = x),
◮ and thus we need to approximate x 7→ p(x).

9/34

Logistic regression: model

Model
Logistic regression assumes that ∃β0 ∈ R, β ∈ Rp, such that †

P(Y = 1|X = x) =
exp

(
β0 + β⊤x

)

1 + exp (β0 + β⊤x)

or, equivalently,

logit (P(Y = 1|X = x)) = β0 + β⊤x

with
logit : (0, 1) → R

p 7→ ln

(
p

1− p

)

the logit function.

† and therefore P(Y = 0|X = x) = 1
1+exp(β0+β⊤x)
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The logistic function

0 0.2 0.4 0.6 0.8 1

-5

0

5

p

logit function

logit(0.5) = 0

➠ logit defines a correspondence: proba p ∈ (0, 1)←→ β0 + β⊤x ∈ R
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Remark: generalized linear models (GLM)

The logistic regression model has the form
◮ Y |X ∼ Bernoulli (Eβ(Y |X )),
◮ g (Eβ(Y |X )) = β0 + β⊤X , with g = logit.

➠ special case of the generalized linear model (GLM)
(g is called link function)

Remark: we have already met another GLM model
◮ Y |X ∼ N

(
Eβ(Y |X ), σ2)

◮ g (Eβ(Y |X )) = β0 + β⊤X with g = Id
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Generalized linear models

Definition
The GLM contains all statistical models such that
◮ Y |X follows a distribution from an exponential family:

f Y |X (y |x) = C (η)h(y) exp (ηy) with η = η(x).

◮ g (Eβ(Y |X = x)) = β0 + β⊤x .

Vocabulary. The function g is called the link function.†

Example. Bernoulli distributions form an exponential family.

f (y) = θy (1− θ)1−y

= (1− θ) exp

(
ln

(
θ

1− θ

)
y

)
➠ η = ln

(
θ

1− θ

)

† Let N denote the set of admissible value for η: g is often chosen to be a bijection from N to R.

Example: Yi |Xi
iid∼ Poisson(θi), with ln θi = β0 + β1Xi

Poisson distributions form an exponential family:

f (y) = exp(−θ) θ
y

y !

=
1
y !

exp(−θ) exp(ln(θ)y) ➠ η = ln(θ)

0 0.5 1 1.5 2
0

5

10

15

20

25

x

y

true model
least squares
GLM/Poisson
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Classification function

Logistic regression leads naturally to a “soft” classification
◮ PY |X

β (Y = 1|X = x) ∈ [0, 1]

“Hard” classification (taking values in Y = {0, 1})
Let δ0 ∈ [0, 1] (decision threshold).

A classification function can be constructed as follows:

hδ0 : X → {0, 1}

x 7→
{

1 if PY |X
β (Y = 1|X = x) ≥ δ0

0 if PY |X
β (Y = 1|X = x) < δ0

PY |X
β (Y = 1|X = x) ≥ δ0 ⇐⇒ β0 + β⊤ ≥ logit(δ0)

➠ separation by a hyperplane in X

13/34

Minimization of the misclassification risk

Let us consider the loss function L(y , ỹ) = 1y 6=ỹ .

The corresponding risk is the probability of misclassification:

R(hδ0) = E (L(Y , hδ0(X )) = P (Y 6= hδ0(X )) .

Proposition (see PC)

The minimum of δ0 7→ R(hδ0) is attained at δ0 = 0.5

➠ With δ0 = 0.5, the separating hyperplane is β0 + β⊤x = 0.

Remark: a more general formula can be proved for an asymmetric loss
(L(0, 1) 6= L(1, 0)). See PHC’s lecture notes.
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Maximum likelihood estimator

Simplification of notations: x →
(

1
x

)
and β →

(
β0

β

)

➠ PY |X
β (Y = 1|X = x) =

exp(β⊤x)
1+exp(β⊤x)

Log-likelihood (see PC)

ℓ(β) = lnL(β; x , y)

=
n∑

i=1

{
yi β

⊤xi − ln
(
1 + exp(β⊤xi )

)}

Maximization of ℓ
Carried out using a numerical optimization algorithm

➠ for instance, the Newton-Raphson algorithm
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Reminder: Newton-Raphson algorithm in one dimension

Let φ : R→ R. We want β that satisfies φ(β) = 0
Newton-Raphson algorithm is iterative:
◮ initialization: β(0)

◮ iteration: β(k+1) = β(k) − φ(β(k))
φ′(β(k))

0 0.5 1 1.5
-1

-0.5

0

0.5

φ(β)

β(0) β(1) β(2)

β⋆
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Maximization of ℓ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:
◮ φ→ ∇βℓ

◮ φ′ → ∇2
βℓ

The iteration follows:

β(k+1) = β(k) −
[
∇2

βℓ
(
β(k)

)]−1
∇βℓ

(
β(k)

)

Under the following conditions:

◮ ∇2
βℓ (.) is Lipschitz continuous,

◮ ∇2
βℓ

(
β(0)

)
is invertible

◮ h0 =
[
∇2

βℓ
(
β(0)

)]−1
∇βℓ

(
β(0)

)
small enough†,

the algorithm converges to a point β⋆ such that ∇βℓ (β
⋆) = 0.

† cf. “Kantorovich theorem” on wikipedia for a more precise statement
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LR performed on the example with 2 explanatory variables

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

“Negative” label
“Positive” label

x (1)

x
(2
)

Decision boundary for δ0 = 0.5
Wrong “Positive” pred.
Wrong “Negative” pred.

Prediction errors:

◮ “Negative” examples predicted as “Positive”

◮ “Positive” examples predicted as “Negative”
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Confusion matrix & associated definitions

Truth
Negative (N)

Truth
Positive (P)

Prediction
Negative

True Negative
(TN)

False Negative
(FN)

Prediction
Positive

False Positive
(FP)

True Positive
(TP)

True Positive Rate

TPR =
TP

P
=

TP

TP + FN

(also called sensitivity)

True Negative Rate

TNR =
TN

N
=

TN

TN + FP

(also called specificity)
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Trade-off between True Negative Rate True Positive Rate

Alternative terminology, from the field of signal processing:
◮ 1− TPR is the miss rate (false negative rate)
◮ 1− TNR is the false alarms rate (false positive rate)

Trade-off.
The value of δ0 impacts the trade-off TNR/TPR:

◮ reminder: hδ0 = 1 if PY |X
β (Y = 1|X = x) ≥ δ0

◮ when δ0 ր, TNR ր, and TPR ց
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Influence of δ0
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ROC curve (Receiver Operating Characteristic)
◮ a tool for decision support (choice of δ0)
◮ a tool useful for classifier comparison
◮ associated definition: AUC = Area Under Curve
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Extension: large number of variables

How to handle the case where p is large

The log-likelihood is penalized:
◮ L1 : β̂ = argmaxβ

(
ℓ(β)− λ‖β‖2

)

◮ L2 : β̂ = argmaxβ (ℓ(β)− λ‖β‖1)

➠ see Lecture 8/10

p is “large” if p ≫ n, or even simply p ≈ n
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Extension: more than two classes

Multiclass classification
Let {0, 1, . . . ,K − 1} be the set of labels (classes), K ≥ 3.

One class is chosen as the reference class and K − 1 binary logistic
regressions are performed (here class “0” was chosen):





ln
(

P(Y=1|X=x)
P(Y=0|X=x)

)
= β1,0 + β⊤

1 x

...

ln
(

P(Y=K−1|X=x)
P(Y=0|X=x)

)
= βK−1,0 + β⊤

K−1x
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Problem
Back to the general setting (regression/classification).

Let ĥ be a predictor X → Y learned from data:

ĥ(x) = ĥ(x ; (X1,Y1), . . . , (Xn,Yn)) = ĥ(x ;X ,Y ).

Recall that, given a loss function L, we define the risk, or
generalisation error :

R
(
ĥ
)

= E
(
L(Y , ĥ(X ))

∣∣∣ X ,Y
)

=

∫∫

X×Y
L(y , ĥ(x)) PX ,Y (dx , dy).

Examples. L(y , ỹ) = (y − ỹ)2, L(y , ỹ) = |y − ỹ |, L(y , ỹ) = 1y 6=ỹ , . . .

Problem
How can we estimate this risk (which depends on PX ,Y ) ?
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Refresher: empirical risk

We call empirical risk the risk

R̂n =

∫∫

X×Y
L(y , ĥ(x)) P̂n(dx , dy) =

1
n

n∑

i=1

L(Yi , ĥ(Xi ))

computed with PX ,Y equal to P̂n = 1
n

∑n
i=1 δXi ,Yi

.

Question

Is this empirical risk R̂n, in general, a “good” estimator of the true
risk R(ĥ) ?

△! the data is used twice !

Intuition: It is “risky” to estimate the risk from the error observed
on the same data already used to construct ĥ. . .
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Zoom on an illuminating special case

Consider the case of “ordinary” linear regression:
◮ h(x) = β0 + β1x

(1) + . . .+ βpx
(p),

◮ quadratic loss: L(y , ỹ) = (y − ỹ)2,
◮ p+ 1 ≤ n and X⊤X an a.s. invertible (p+ 1)× (p+ 1) matrix.

Empirical risk minimization : β̂ =
(
X⊤X

)−1
X⊤Y .

Remark: link between R̂n and the coefficient R2 of determination:

R2 = 1− RSS(β̂)
TSS

= 1−
∑n

i=1

(
Yi − β̂⊤Xi

)2

∑n
i=1
(
Yi − Ȳ

)2

= 1− R̂n

v̂arn(Y )
with v̂arn(Y ) =

1
n

n∑

i=1

(
Yi − Ȳ

)2
.

27/34

Zoom on an illuminating special case (cont’d)

Consider the generalization error wrt responses only:

R̃n = E

(
1
n

n∑

i=1

(
Ỹi − β̂⊤Xi

)2
∣∣∣∣∣ X ,Y

)
,

with, for all i , Ỹi and Yi iid conditionally to X .

Proposition

Assume that the unknown distribution PX ,Y is such that
Yi = β⊤Xi + εi , with εi ∼ N (0, σ2), independent of Xi . Then

E
(
R̃n

)
= σ2

(
1 +

p + 1
n

)
,

E
(
R̂n

)
= σ2

(
1− p + 1

n

)
.
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Zoom on an illuminating special case (cont’d)

Interpretation. On average, the empirical risk under-estimates
the generalization error:

E
(
R̃n − R̂n

)
= 2

p + 1
n

σ2 > 0.

Another way of looking at this result. Set

η =
p + 1
n

=
number of coefficients

sample size
·

Then
E
(
R̃n

)

E
(
R̂n

) =
1 + η

1− η
−−−→
η→1

+∞.
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Zoom on an illuminating special case (cont’d)

Proof. Let us compute first E
(
R̃n | X

)
with (reminder)

R̃n = E

(
1
n

n∑

i=1

(
Ỹi − β̂⊤Xi

)2
∣∣∣∣ X ,Y

)
.

We have E
(
Ỹi | X

)
= E

(
β̂⊤Xi | X

)
= β⊤Xi , therefore

E
(
R̃n | X

)
=

1
n

n∑

i=1

var
(
Ỹi − β̂⊤Xi | X

)

=
1
n

n∑

i=1


var

(
Ỹi | X

)

︸ ︷︷ ︸
=σ2

+var
(
β̂⊤Xi | X

)

︸ ︷︷ ︸
=⊛


 .
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Zoom on an illuminating special case (cont’d)

We already know that var
(
β̂ | X

)
= σ2

(
X⊤X

)−1
. Therefore:

⊛ = var
(
β̂⊤Xi | X

)

= X⊤
i var

(
β̂ | X

)
Xi

= σ2 X⊤
i

(
X⊤X

)−1
Xi

= σ2 tr

((
X⊤X

)−1
XiX

⊤
i

)
.

By noting that X⊤X =
∑

i XiX
⊤
i , we get:

∑

i

var
(
β̂⊤Xi | X

)
= σ2 tr

((
X⊤X

)−1∑

i

XiX
⊤
i

)

= σ2 tr (Ip+1) = σ2 (p + 1) .
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Zoom on an illuminating special case (cont’d)

Thus, we have:

E
(
R̃n | X

)
=

1
n

n∑

i=1


var

(
Ỹi | X

)

︸ ︷︷ ︸
=σ2

+var
(
β̂⊤Xi | X

)

︸ ︷︷ ︸
=⊛




= σ2 + σ2 p + 1
n

= σ2
(

1 +
p + 1
n

)
.

Hence the result: E
(
R̃n

)
= σ2

(
1 + p+1

n

)
.

Exercise: prove the second inequality, i.e.,

E
(
R̂n

)
= σ2

(
1− p + 1

n

)
.

➠ see PC
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Training set and test set

Conclusion/extrapolation. The empirical risk is in general
◮ a negatively biased estimator of the risk,
◮ with a bias that is increasing when p ր.

Solution: split the data in two sets

◮ training data: used to construct ĥ,
◮ test data: used to estimate the generalization error.

Example:

training
(e.g., 80%)

test
(20%)
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Exemple “Ozone” (cont’d from lecture #6)

Goal: predict the ozone concentation on day t + 1
from data available on day t

34/34

“Ozone” example: 70/30

All 7 explanatory variables and their 21 interactions are used.

Result from 10 random splits, 70% / 30%:

R2 R̂n R̂test
n

0.77185 345.1 573.32
0.76831 371.41 496.03
0.77292 343.96 608.62
0.76093 350.53 606.14
0.78584 345.45 669.66
0.75459 399.9 476.61
0.71367 343.72 643.72
0.77689 377.32 524.74
0.8176 317.83 695.86
0.79784 373.18 554.25
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Lecture 8/10

Regularization and model selection

In this lecture you will learn how to. . .

◮ Construct a regularized regression/classification model
◮ Include non-linearities in linear models
◮ Choose the value of hyper-parameters, select a model
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Limitations of “ordinary least squares”

Recall that X has size #individuals ×#variables (n × (p + 1)).

Critical situations for (ordinary) linear regression:
◮ when X⊤X not invertible
◮ or poorly conditioned

Typical cases

1 when the number of variables is large

2 when there are strong correlations between explanatory
variables
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Example: p ≫ n

Subset of a microarray for transcriptome analysis,
p ≈ 25000 for one patient

Typically, n ≈ 10 or 100!

6/37

Example: strong correlation between explanatory variables

“Ozone” example −→ correlation between variables NO and NO2
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Example: strong correlation. . . (cont’d)

Vector β̂ obtained by OLS regression:
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

Observations:
◮ The negative coefficient associated to NO2 is surprising

➠ hazardous interpretation of the coefficients
◮ The least influential variables (small coefficients) could

perhaps be removed from the model?

8/37

One possible solution: penalized regression

A penalty term is added to the empirical risk :

β̂ = argmin
β

RSS(β)︸ ︷︷ ︸
data “fidelity”

+ λ︸︷︷︸
hyperparameter

Ω(β)︸ ︷︷ ︸
penalty

. (⋆)

Expected benefits of penalization:
◮ make the solution of (⋆) unique,
◮ take prior information into account

(this is related to the Bayesian approach),
◮ avoid over-fitting when the family of predictor functions is

“large” (for linear models: p ≫ n),
◮ make it easier to interpret the resulting model.
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Ridge regression

Penalty

Ω(β) = ‖β‖2

β̂RIDGE = argmin
β

‖Y − Xβ‖2 + λ‖β‖2

Exercise. Prove that:

β̂RIDGE =
(
X⊤X + λIp+1

)−1
X⊤Y .

➠ When λր, the conditioning of
(
X⊤X + λIp+1

)
improves.

Remark: β̂RIDGE has a Bayesian interpretation (see PC).
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“Ozone” example: βRIDGE plot in function of λ
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LASSO regression

Penalty

Ω(β) = ‖β‖1 =
∑n

j=1 |βj |

β̂LASSO = argmin
β

‖Y − Xβ‖2 + λ‖β‖1 (⋆)

Minimization of the criterion
◮ no explicit expression for β̂LASSO

➠ dedicated algorithms

12/37

LASSO regression: reformulation

β̂LASSO = argmin
β

‖Y − Xβ‖2 + λ‖β‖1 (⋆)

◮ Let β̂OLS denote the OLS estimator of β:

β̂LASSO = β̂OLS forλ = 0

◮ Since ‖Y − Xβ‖2 = ‖X (β − β̂OLS)‖2 + c , we have:

β̂LASSO = argmin
β

‖X (β − β̂OLS)‖2 + λ‖β‖1

◮ Reformulation with a contraint: it can be proved that there
exists cλ ∈ R+ such that

β̂LASSO = argmin
β

‖X (β − β̂OLS)‖2 such that‖β‖1 ≤ cλ

(and similarly for β̂RIDGE)
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LASSO regression: intuitive interpretation

14/37

“Ozone” example: β̂LASSO versus λ
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When λր, the number of coefficients equal to zero ր
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“Ozone” example: β̂LASSO for several λ

With λ = 0 (OLS)
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

➠ The coefficient for NO2 may seem surprising

With λ = 0.5
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 18.1 17.2 -2.1 0 4.9 2.2 1.9

➠ One of the two correlated variables is discarded,
makes it easier to interpret the coefficients

With λ = 3
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 15.9 14.1 0 0 2.2 0 0

➠ The remaining variables are progressively discarded

Choice of the hyper-parameter λ ?
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Non-linearities in linear models. . .

If the empirical risk R̂(ĥ) is high, several possible causes:

◮ noise: intrinsic difficulty in predicting Y

➠ irreducible statistical error.

◮ non-linearity of the optimal predictor wrt the X (j)’s
➠ reducible approximation error.

Possible workaround: x (1), . . . , x (p) 7→ x̃ (1), . . . , x̃ (q)

◮ with x̃ (j) function of x (1), . . . , x (p).
◮ The model is still linear with respect to β.
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Examples

A few examples:

◮ scalar transformations: ln(x (j)),
√
x (j), (x (j))k . . .

◮ interactions (here, of order two): x (j)x (k), j 6= k ,
◮ higher-order interactions,
◮ (truncated) expansion in a basis. . .

△! if q ≫ p, risk of over-fitting.

Remarks: feature engineering
◮ Proposing new relevant variables

➠ domain expertise (or model selection. . . ?)
◮ The same principle can be used to reduce dimension

➠ features extraction.
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Expansion in a basis

Principle

Let {ψm}m>0 be a function basis of L2(X )†.

Consider X̃ (m) = ψm(X ), m = 1, . . . ,M

➠ truncated expansion in the basis {ψm}.

Examples of bases (preferably orthogonal):
◮ polynomial bases,
◮ wavelet bases,
◮ Fourier bases. . .

† or any other function space assumed to contain the optimal predictor h∗.
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Example: LIDAR data
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x-axis: distance travelled before the light is reflected back to its source
y -axis: logarithm of the ratio of received light from two laser sources

Data obtained from http://matt-wand.utsacademics.info/webspr/lidar.html

LIDAR: LIght Detection And Ranging
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Basis of orthogonal cosines (basis of L2([0, 1])
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Example: LIDAR data (cont’d)

Quadratic loss + basis of cosines
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Legendre polynomials (orthonormal basis of L2([−1, 1]))
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Example: LIDAR data (cont’d)

Quadratic loss + Legendre polynomials
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Haar wavelet basis
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level j = 1 → 1 element

level j = 2 → 2 elements

level j = 3 → 2(j−1) = 4 elements

Example: LIDAR data (cont’d)

Quadratic loss + Haar wavelets
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Problem #1: choosing a “good” family H
Example. Selection of k variables among p. Let J ⊂ {1, . . . p}:

h(x) = β0 +
∑

j∈J

βjx
(j).

➠ Defines a family HJ with kJ = card(J) + 1 parameters.

Example. Expansion in a basis, truncated at rank J:

h(x) =
J∑

k=0

βjψj(x).

➠ Defines a family HJ with kJ = J + 1 parameters.

Problem: model selection
How to choose the family HJ (and, in particular, its “size” kJ) ?

Remark: replace h(x) with ln
h(x)

1−h(x)
for logistic regression.
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Problem #2: choosing a regularization hyper-parameter

Most methods require some “tuning”. . .

◮ Ridge/LASSO regression : β̂ = argmin R̂pen
n,λ , avec

R̂pen
n,λ (β) = R̂n(β) + λ

∑

j

|βj |q , q ∈ {1, 2},

◮ Choosing the number k of neighboors in a k-NN model:

h(x) =
1
k

∑

i∈Vn,k (x)

yi ,

with Vn,k(x) the indices of the k nearest neighboors of x .

Problem: calibration
How to “tune” the value of such hyperparameters ?
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Over-fitting: beware!

Idea
Choose the family HJ , or the hyperparameter λ, in order to
minimize (an estimation of) the generalization error.

△! again, the empirical risk R̂n, estimated on the training data, is
not appropriate !

Example. Polynomial regression in x ∈ R, degree ≤ J:

h(x) = β0 + β1x + . . .+ βJx
J ,

with J = 2, 5, 8, 11.

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of
parameters in the model.
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Example: polynomial regression

0 0.5 1
-1

0

1

2
R2=0.472, MSE(test)=0.0983

degre 2

0 0.5 1
-1

0

1

2
R2=0.836, MSE(test)=0.0425

degre 5

0 0.5 1
-1

0

1

2
R2=0.947, MSE(test)=0.0974

degre 8
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0
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Understanding over-fitting: simulations

Blue: empirical risk R̂n / Red: error on the test set

Figure from Hastie, Tibshirani & Friedman (2017).
The Elements of Statistical Learning (12th edition), Springer.
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Let’s recapitulate. . .

Problem. We want to estimate the error to choose H or λ but. . .
◮ it should be done neither on the training data

(➠ over-fitting problem),
◮ nor on the test data

(➠ bias in the final estimation of the generalization error).
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Solution: validation set

Idea: split the data in three sets

◮ training data: construct ĥ with given H /λ,
◮ validation set: choose H , λ, etc.
◮ test data: estimate the generalization error.

Simple validation (hold-out)

training
(e.g., 60%)

validation
(e.g., 20%)

test
(e.g., 20%)
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Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

train. 1
(20%)

train. 1
(20%)

train. 1
(20%)

valid. 1
(20%)

train. 2
(20%)

train. 2
(20%)

valid. 2
(20%)

train. 2
(20%)

train. 3
(20%)

valid. 3
(20%)

train. 3
(20%)

train. 3
(20%)

valid. 4
(20%)

train. 4
(20%)

train. 4
(20%)

train. 4
(20%)

test
(e.g., 20%)

➠ the error is averaged over the k validation sets.

Special case: leave-one-out cross validation
◮ k = n blocks (of size n/k = 1).
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“Ozone” example: LASSO / choice of λ

◮ Predictor: LASSO regression using all variables and their
interactions

◮ λ̂ obtained by CV (LOO)

5 10
15

20

25

30

λ

training
validation

λ̂ = 1.02

√
〈(
ŷ
−
y
)2
〉
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“Ozone” example: interactions

◮ We add variables of the form X (j)X (j ′) and X (j)X (j ′)X (j ′′).
◮ LASSO regression (L1 penalty).
◮ Hyper-parameter λ estimated through 10-fold CV.

model X (j) X (j) X (j′) X (j) X (j′) X (j′′)

total number
of variables (q)

7 28 119

number of selected
variables (βj 6= 0)

4 9 8
√
MSE CV (10-fold) 49.1 41.5 33.0

selected variables MOCAGE
TEMPE
NO
VentANG

MOCAGE
TEMPE
NO2
MOCAGE/TEMPE
TEMPE/TEMPE
TEMPE/MH2O
TEMPE/NO2
NO2/VentANG
VentANG/VentANG

MOCAGE
TEMPE
NO2
MOCAGE/TEMPE
TEMPE/TEMPE
TEMPE/RMH2O
TEMPE2/MOCAGE
VentANG2/TEMPE
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Example: LIDAR data (cont’d)

Quadratic loss + Legendre polynomials

300 400 500 600 700 800
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

lo
g-

ra
tio

distance

degree=1
degree=3
degree=8
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Example: LIDAR data (cont’d)
Model selection

0 20 40

degré

0.05

0.1

0.15

0.2

cosine
Legendre

√
M
S
E

(L
O

O
-C

V
)

d̂cos = 6 d̂poly = 10
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Another approach to model selection: the AIC criterion

Assumption: parametric statistical models Mj for PY |X .

Denote by θ̂MLE
j the MLE of θ in model Mj .

Then the AIC criterion can also be used for model selection:

ĵ = argminAIC(j), AIC(j) = −2 lnL
(
θ̂MLE
j ;X ,Y

)
+ 2kj ,

with kj the number of parameters in model Mj .

➠ see PC for a partial justification (OLS linear regression)
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“Ozone” example: AIC

◮ Predictor obtained by the ordinary least squares method, on an
increasing number of variables
(linear terms first, then interactions)

0 20
1300

1320

1340

1360

1380

1400

# variables

AIC

k̂ = 8
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Lecture 9/10

Some models for supervised learning

In this lecture you will learn how to. . .

◮ Predict with decision trees
◮ Predict with neural networks
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Soft classification with the log loss
Back to logistic regression

◮ “soft” classifier: h(x) = PY |X
β (Y = 1|X = x) ∈ [0, 1].

Definition: log loss for soft classification

L(y , h(x)) =

{
− ln(h(x)) if y = 1,
− ln(1 − h(x)) if y = 0.

Remark: L(y , h(x)) ≥ 0 and L(y , h(x)) = 0 ⇔ h(x) = y .

Equivalence between MLE and empirical risk minimization

R̂(h) =
∑n

i=1 L(yi , h(xi ))

= − ln
( ∏n

i=1(h(xi ))
yi (1 − h(xi ))

1−yi

︸ ︷︷ ︸
likelihood for Yi |Xi

iid∼ Ber(h(Xi ))

)
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Binary classification: spam detection
Data collected over 4601 e-mails
◮ explanatory variables: relative freq. of 57 of the most used

words
◮ variable to be explained: label “Spam” or “Email”

➠ categorical variable (binary in this example)

Source: The Elements of Statistical Learning, Springer (for next slide also)
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Regression tree: “Ozone” example
Simplified (for the sake of visualization)
◮ predict variable 03 (quantitative variable)
◮ from variables MOCAGE and TEMP

Vocabulary. When the variable to be explained is
◮ quantitative → regression tree
◮ categorical → classification tree
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Regression tree: “Ozone” example
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Recursive partitioning: general principle

Goal
Construct a partition of X from the data (X ,Y ).

Principle: iterative construction of a sequ. (Pm)m≥1 of partitions,

◮ Pm =
{
Z

(m)
1 , . . . ,Z

(m)
m

}
, where partition Pm contains m subsets.

Initialization: P1 = {X}.

Pm → Pm+1: split a subset Z (m)
km

along one of the variables:

◮ Z̃1 = Z
(m)
km

∩
{
x such that x (jm) ≤ δm

}

◮ Z̃2 = Z
(m)
km

∩
{
x such that x (jm) > δm

}

(the index jm and the threshold δm still have to be specified)
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An example with p = 2

1○ subset Z (m)
km

4○ subset Z̃1

4○ subset Z̃2

2○

3○

x (1)

x (2) Iteration Pm → Pm+1:
◮ 1○ subset Z (m)

km
∈ Pm

◮ 2○ variable x (jm) (here jm = 2)
◮ 3○ threshold δm

◮ 4○ construction of Z̃1 and Z̃2

After splitting Z
(m)
km

, we get:

Pm+1 = Pm

⋃ {
Z̃1, Z̃2

}
\
{
Z

(m)
km

}
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Choice of km, jm and δm

Let D(Z ) be a measure of the heterogeneity of a subset Z .

Example (for a quantitative label y)

D (Z ) =
∑

i∈Z
(yi − ȳZ )

2

where ȳZ is the empirical mean computed over Z .

km, jm and δm are jointly chosen in such a way that

D
(
Z

(m)
km

)
− D(Z̃1)− D(Z̃2) is as large as possible

➠ largest reduction of heterogeneity

(Recall that Z̃1 and Z̃2 are the subsets obtained by splitting Z
(m)
km

)
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Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on
the elements of the partition:

hβ(x) =
m∑

k=1

βk1Z
(m)
k

(x).

Remark: for a given partition, this is a linear model with respect to
the m variables 1

Z
(m)
k

(x).
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Estimation of the coefficients

Principle: to estimate β(m) =
(
β
(m)
1 , . . . β

(m)
m

)
,

◮ choose a loss function L(y , hβ(x)),
◮ then minimize the empirical risk.

Simplification:

minβ R̂(hβ) = minβ
∑n

i=1 L(yi , hβ(xi ))

= minβ
∑m

k=1
∑

i∈Z (m)
k

L(yi , βk)

=
∑m

k=1 minβk

∑
i∈Z (m)

k

L(yi , βk)

Consequence: ∀k , β̂(m)
k = argminβk

∑
i∈Z (m)

k

L(yi , βk).
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Two important special cases

Regression with the quadratic loss

β̂
(m)
k = argminβk

∑

i∈Z (m)
k

(yi − βk)
2 = y

Z
(m)
k

Binary classification with the logarithmic loss

Soft classification:

β̂
(m)
k = argminβk∈[0,1]

∑

i∈Z (m)
k

(−yi ln(βk)− (1 − yi ) ln(1 − βk))

=
1

card
(
Z

(m)
k

) · card
(
i ∈ Z

(m)
k such that yi = 1

)

Hard classification: threshold at δ0 = 1
2 (cf. logistic regression).
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Choosing the size m of the partition

◮ m can either be given beforehand (∼ prior knowledge)
◮ or estimated by cross-validation.

“Ozone” example
◮ Regression of O3 with p = 7 explanatory variables
◮ m is chosen by leave-one-out cross-validation

0 10 15 20 25 30
26

27

28

29

30

31

32

33

cross-validation

m
m̂ = 5

√
M
S
E
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Regression tree: “Ozone” example
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More trees. . .

Disadvantages of decision trees
◮ high sensitivity to the sample (x , y)

◮ piecewise constant prediction on each subset (by construct.)
(not satisfactory if the optimal prediction function is smooth)

Extensions
◮ aggregation of decisions tree models

➠ Random forests
◮ weighted sum of weak classifiers

➠ Boosting (AdaBoost)
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The (multipolar) biological neuron: axons, dendrites. . .

Image: Bruce Blaus, https://commons.wikimedia.org, CC BY 3.0

“A multipolar neuron is a type of neuron that possesses a single axon and many dendrites
(and dendritic branches), allowing for the integration of a great deal of information

from other neurons.” (https://fr.wikipedia.org/wiki/Neurone_multipolaire)
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The artificial neuron

Definition: neuron (McCulloch and Pitts, 1943)†

In statistical learning, a neuron with p variables (inputs) is a
function, generally non-linear†, of the form

h(x) = ϕ (w x + b) , x ∈ Rp,

where
◮ ϕ is an increasing R → R function;
◮ w ∈ R1×p, and b ∈ R.

Vocabulary
◮ ϕ: activation function,
◮ w1, . . . , wp: weights,
◮ b: bias (nothing to do with the bias of an estimator).

† The original neuron of McCulloch & Pitts (1943) specifically used ϕ = sgn as an activation function.
‡ We will see later a situation where a linear neuron (ϕ = Id) is used.
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The artificial neuron: illustration (p = 5)

Σ ϕ y

+1

x (1)

w1
x (2)

w2

x (3)
w3

x (4)

w4

x (5)

w5
b
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Activation functions

Discontinuous activation functions (not recommended†):
◮ Heaviside function: ϕ(v) = 1v≥0, or
◮ sign function: ϕ(v) = sgn(v) = 1v>0 − 1v<0.

“S-shaped” functions, a.k.a. sigmoids:
◮ logistic‡ : ϕ(v) = 1

1+e−v = 1
2 + 1

2 tanh
(
v
2

)
, or

◮ tanh : ϕ(v) = tanh(v) = ev−e−v

ev+e−v .

The ReLU (Rectified Linear Unit) function:
◮ ϕ(v) = max(0, v).

† Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.
‡ The word “sigmoid” sometimes refers to this particular function.
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Activation functions (cont’d)

Image: C. C. Aggarwal (2018). Neural networks and Deep Learning, Springer.
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Remark: relation with logistic regression

Remark. With the logistic activation function (sigmoid),

y = ϕ(v) =
1

1 + e−v
⇔ v = ln

(
y

1 − y

)
.

Since v = wx + b, we recover for h(x) the form of the logistic
regression predictor.
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Multi-layer perceptron: definition
Let p, K be non-zero integers.

Definition: multi-layer perceptron† (MLP)

We call multi-layer perceptron with M + 1 layers, p variables (input)
and K responses (output), any function Rp → RK of the form

h =
(
ϕ
M

◦ gM
)
◦ · · · ◦

(
ϕ
j
◦ gj

)
◦ · · · ◦

(
ϕ1 ◦ g1

)
,

where‡

◮ gk : Rmk−1 → Rmk is affine,
◮ ϕ

k
: Rmk → Rmk represents the action coordinate by

coordinate of an increasing function ϕk : R → R.
◮ m0,m1, . . . ,mM : non-zero integers, m0 = p, mM = K .

† Rosenblatt’s original perceptron (1957) did not include hidden layers (M = 1). It was using the
activation function h(x) = sgn(x) as McCulloch and Pitts (1943), and weights wj ∈ {−1,+1,−∞}.

‡ there will be one exception this rule later (“softmax” layer)
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Multi-layer perceptron: definition (cont’d)

Vocabulary: layers of variables
◮ z[0] = x : input layer,
◮ z[k] =

(
ϕ
k
◦ gk

)(
z[k−1]

)
, 1 ≤ k < M: hidden layers,

◮ z[M] = y =
(
ϕ
M

◦ gM
)(
z[M−1]

)
: output layer.

Remark. Let us write

gk
(
z[k−1]

)
= Wkz[k−1] + bk .

Then, for all j ∈ {1, . . . ,mk} we recognize a neuron:

z
(j)
[k] = ϕk

(
wk,j z[k−1] + b

(j)
k

)
,

where wk,j = e⊤j Wk is the j-th row of Wk .

➠ Vocabulary: weights, bias, activation function.
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Multi-layer perceptron: illustration
Example of a multi-layer perceptron with p = 3 inputs, K = 3 outputs,
and two hidden layers of sizes m1 = 5 and m2 = 4.

x(1)

x(2)

x(3)

z
(1)
[1]

z
(2)
[1]

z
(3)
[1]

z
(4)
[1]

z
(5)
[1]

z
(1)
[2]

z
(2)
[2]

z
(3)
[2]

z
(4)
[2]

y (1)

y (2)

y (3)

ϕ
1
◦ g1 ϕ

2
◦ g2

ϕ
3
◦ g3

m0 = p = 3

m1 = 5

m2 = 4

m3 = K = 3

Vocabulary: fully connected, feed-forward neural network
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Output layer: activation function
The output layer must be adapted to the problem at hand. . .

Regression. Y ⊂ R, or more generally RK .
◮ Perceptron with K outputs
◮ Activation function: ϕM = Id.
◮ Thus the last transformation (ϕ

M
◦ gM) is linear (affine).

Classification. K classes, Y = [0, 1]K (“soft” classification).
◮ Perceptron with K outputs, with mM−1 = mM = K .
◮ Exception to the definition ➠ the “softmax” layer:

z
(j)
[M] =

exp
(
z
(j)
[M−1]

)

∑p
j ′=1 exp

(
z
(j ′)
[M−1]

) ,
K∑

j=1

z
(j)
[M] = 1.

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer.
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Training: loss functions and regularization

The most commonly used loss functions† are

◮ regression: the quadratic loss
◮ L(y , ỹ) = (y − ỹ)2 for the single-output case,
◮ L(y , ỹ) = ‖y − ỹ‖2 if K > 1.

◮ (soft) classification: the logarithmic loss
◮ For all j ∈ {1, . . . ,K}, we have y (j) ∈ {0, 1} and ỹ (j) ∈ [0, 1].
◮ L(y , ỹ) = −∑K

j=1 y
(j) ln

(
ỹ (j)

)
.

Nb parameters is high ⇒ regularize to avoid over-fitting
◮ penalization, for instance L1 (LASSO) or L2 (ridge);
◮ other (not covered): early stopping, drop out. . .

† for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)

R̂n(θ) =
1
n

n∑

i=1

L (Yi , hθ(Xi )) ,

where θ denotes the parameters of the model (weights, biases).

➠ Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

◮ computational burden when n is large: random “mini-batchs”
➠ stochastic gradient method (not covered);

◮ recursive computation of the gradient of a composition of fcts
➠ back-propagation method (not covered).
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Example: MNIST

70 000 images† of size 28 × 28 pixels (256 gray levels)

Problem: multi-class classification (10 classes);
training: 60 000 images / test: 10 000 images

Source: http://yann.lecun.com/exdb/mnist/

Statistics and Learning Lecture 9/10

269/310



32/33

Example: MNIST

➠ see Jupyter / Python / Scikit-Learn notebook
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Convolutional neural networks (CNNs)

Schematic diagram of a typical CNN

Image: Aphex34, https://commons.wikimedia.org, CC BY-SA 4.0
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Lecture 10/10

Unsupervised learning: two examples

In this lecture you will. . .

◮ Understand the main ideas of unsupervised learning through
two examples of unsupervised learning tasks.

◮ Learn how to reduce the dimension of a dataset using
principal component analysis.

◮ Learn how to partition the data into clusters of similar
examples (clustering) using the K-means algorithm.
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Lecture outline
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2.1 – Low rank approximation
2.2 – Finding the optimal subspace: SVD
2.3 – Sample variance and covariance of PCA components

3 – Clustering
3.1 – Dissimilarity
3.2 – K -means algorithm
3.3 – Choice of the number of clusters

4 – A taste of some (more) advanced methods
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Recap: supervised learning

◮ We observe pairs (Xi ,Yi ):

(X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y ,

with Xi ∈ X : instance and Yi ∈ Y: label.

◮ We want to approach the optimal predictor

h∗ = argminh E (L(Y , h(X ))) ,

which is a property of the conditional distribution PY |X :

h∗(x) = argminỹ∈Y E (L(Y , ỹ) | X = x)

= argminỹ∈Y

∫
L(y , ỹ) PY |X=x(dy).
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Unsupervised learning
Learning without a “teacher”:

◮ we observe instances only,

X1, . . . , Xn
iid∼ PX ,

and we are interested in the distribution PX .

Assume that X ⊂ Rp and that PX has a pdf f X .

Problem: curse of dimensionality

Estimating a “general” pdf f X has a cost (sample size required to
achieve a certain accuracy) that scales exponentially with the
dimension p.†

† Non-parametric statistics, a branch of statistics which studies among other thing density estimation
under weak assumptions, provides theoretical results (not covered) that support this claim.
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Goals in unsupervised learning

1 Ideally, estimate the pdf f X of the data distribution.
➠ unless p is small enough (say, p . 5, rare in learning

problems), this problem is in general too difficult†.

2 Reveal underlying “structures” in the distribution
(without explicitely constructing a density estimator)
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† In low dimension, one can use, e.g., kernel density estimators (not covered).
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Goal: dimension reduction
We are looking for a mapping

T : X → Z ⊂ Rq with q ≪ p

x 7→ z = T (x)

together with a reconstruction mapping

T̃ : Z → X
z 7→ x̂ = T̃ (z)

such that

1
n

∑n
i=1 L(xi , x̂i ) = 1

n

∑n
i=1 L

(
xi , T̃

(
T (xi )︸ ︷︷ ︸

zi

))

is as small as possible (where L(x , x̂) denotes a loss function).

Remark: more generally, Z could be a q-dimensional manifold, which is an abstract generalization of the
concepts of curve (q = 1) and surface (q = 2); cf. differential geometry.
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“Linear” dimension reduction

Let x1, . . . , xn ∈ Rp be an observed sample. Let q < p.

Definition: affine subspace

Aq ⊂ Rp is an affine subspace of dimension q if there exists
◮ µ ∈ Rp,
◮ a matrix A of size p × q with rank q,

such that Aq = Affµ,A = {y ∈ Rp such that y = µ+ Az , z ∈ Rq}.

Definition: principal components analysis (PCA)

PCA consist in finding the best approximation of the data, for the
quadratic loss, by an affine subspace Aq.

The dimension q is either given or chosen automatically.
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“Linear” dimension reduction (cont’d)

Thus, we are looking for Aq = Affµ,A and (zi ) such that

µ, A, (zi ) ∈ argmin
n∑

i=1

‖xi − (µ+ Azi )‖2 . (⋆)

△! The solution is not unique.

✏ If Ã has the same range as A, then
there exists z̃i ’s such that A zi = Ã z̃i for all i .

➠ We will assume wlog that the columns of A are orthonormal:

A⊤A = Idq.

Remark: the orthonormality assumption still does not make A unique. . .
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“Linear” dimension reduction (cont’d)

✏ Fix some µ, A and (zi ), and set z̃i = zi − z̄ . Then

µ+ Azi = µ+ A (z̃i + z̄)

= µ+ Az̄︸ ︷︷ ︸
µ̃

+ Az̃i .

➠ We can constrain the zi ’s, wlog, to be such that z̄ = 0.
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Partial result

Proposition

Minimizing the criterion for a given matrix A leads to:

µ = x̄ ,

zi = A⊤(xi − x̄),

and we have the geometric interpretation:

➠ x̂i = µ+ Azi is the orthogonal projection of xi on Affµ,A.

Consequence. Plugging this result into (⋆), we get

A = argmin
n∑

i=1

∥∥∥
(
Idp − AA⊤

)
(xi − x̄)

∥∥∥
2
.
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Partial result: proof
Fix some A and (zi ), with z̄ = 0, and set vi = xi − Azi . Then

∑

i

‖xi − (µ+ Azi )‖2 =
∑

i

‖vi − µ‖2

= n ‖µ− 1
n

∑

i

vi‖2 + c

where c does not depend on µ. Therefore, the optimal µ is

µ =
1
n

∑

i

vi = x̄ − Az̄ = x̄ .

Thus we set µ = x̄ , and proceed similarly to determine each of the zi ’s.
For all i the minimum is attained (exercise) at

zi = A⊤(xi − x̄),

and we check that z̄ = 1
n

∑
i zi = A⊤(x̄ − x̄) = 0.

Remark: the expressions can also be obtained quickly by setting the gradient of the criterion to zero.
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Partial result: geometric interpretation
Assume temporarily, wlog, that x̄ = 0. Then
◮ µ = 0,
◮ Aq = Aff0,A is a linear subspace of Rp,
◮ zi = A⊤xi and x̂i = Azi = AA⊤xi .

Proposition

The p × p matrix AA⊤ is the orthogonal projection matrix onto the
linear subspace Aff0,A.

Proof. Let v1, . . . vq be the (orthonormal) columns of A.

Then, for all x ∈ Rp and z = A⊤x ,

◮ z (j) = e⊤j A⊤x = v⊤
j x is the scalar product between x and vj ,

◮ x̂ = AA⊤x = Az =
∑

j z
(j) vj is the orthonormal projection of x

onto Aff0,A = span{v1, . . . , vq}.
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Notations
Let X be the matrix of observations:

X =




(x1)
⊤

...
(xn)

⊤


 =




x
(1)
1 . . . x

(p)
1

...
...

x
(1)
n . . . x

(p)
n




We will assume, wlog, that x̄ = 0.

We are looking for a matrix A such that

A = argmin
n∑

i=1

∥∥∥
(
Idp − AA⊤

)
xi

∥∥∥
2

= argmin
∥∥∥
(
Idp − AA⊤

)
X⊤

∥∥∥
2

F

where ‖.‖F denotes the Frobenius norm:

‖M‖2F =
∑

i ,j

M2
ij = tr(M⊤M) = tr(MM⊤).
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Singular value decomposition (SVD)

Theorem
Let M be an n × p real matrix. There exist matrices
◮ U, orthogonal with size n × n (U⊤U = Idn),
◮ V , orthogonal with size p × p (V⊤V = Idp),
◮ D = diag(d1, . . . , dr , 0, . . . , 0) with size n × p,

with d1 ≥ d2 ≥ . . . ≥ dr > 0

such that :

M = UDV⊤,

and r is the rank of both D et M.

The scalars d1, . . . , dr , 0, . . . 0 are the singular values of M.
◮ d2

1 , . . . , d
2
r are the non-zero eigenvalues of MM⊤ and M⊤M.

Proof. See PC #8, bonus exercise.
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Solution of the optimization problem

Let U, D and V be the matrices obtained from the SVD of X :

X = UDV⊤.

Theorem

Let
◮ v1, v2, . . . , vp the columns of V ,
◮ Vq = (v1 | . . . | vq) the submatrix with the first q columns.

Then
Vq ∈ argminA

∥∥∥
(
Idp − AA⊤

)
X⊤

∥∥∥
2

F
.

Proof.

∥∥(Idp − AA⊤)X⊤∥∥2
F
=

∥∥VD⊤U⊤ − AA⊤VD⊤U⊤∥∥2
F

Properties of the Frobenius norm: if U and V are orthogonal,

∥∥VMU⊤∥∥2
F
= ‖M‖2F .

Hence :
∥∥(Idp − AA⊤)X

∥∥2
F
=

∥∥D⊤ − V⊤AA⊤VD⊤∥∥2
F
.

Let Mn,p,q denote the set of all rank q matrices of size n × p. Then

Dq = diag(d1, . . . , dq, 0, . . . , 0) ∈ argminM∈Mn,p,q

∥∥D⊤ −M⊤∥∥2
F

(diagonal matrix with the q largest singular values).

We obtain the result by checking that V⊤VqV
⊤
q VD⊤ = D⊤

q .
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Recap: PCA

Algorithm: Principal components analysis (PCA)

Computing the PCA of a sample (x1, . . . , xn) consists in :

1 Computing the mean x̄ and centering the data: xi ← xi − x̄ .

2 Constructing the matrix X of centered data.

3 Computing the matrix V from the SVD of X
(the singular values are useful too, cf. next section)

4 Reducing the dimension: zi = V⊤
q xi .

Reconstruction. x̂i = x̄ + Vqzi .

Vocabulary.
◮ v1, . . . , vq (columns of Vq): principal axes.

◮ z
(1)
i , . . . , z(q)i : principal component.
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Example: handwritten digits (not MNIST, another one!)

Data: n = 658 images 16×16 of the digit “3” → p = 256

Source : The Elements of Statistical Learning, Springer
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Example: handwritten digits (cont’d)

Visualization of the first two principal axes

mean x̄ principal axis v1 principal axis v2

∀i , x̂i = x̄ + z
(1)
i v1 + z

(2)
i v2

21/50

Principal plane
(
z(1), z(2)

)
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Dashed lines: 5%, 25%, 50%, 75%, 95% quantiles.
Red dots: examples shown on the next slide.
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Interpretation of the components
(
z(1), z(2)

)
based on the 25

examples selected on the previous slide.

replacements

q
(1)
5% q

(1)
25% q

(1)
50% q
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Sample covariance matrix of the components

Let Σ̂Z denote the sample covariance matrix of the q components

Σ̂Z = 1
n

∑n
i=1(zi − z̄)(zi − z̄)⊤

= 1
n

∑n
i=1 ziz

⊤
i (car z̄ = 1

n

∑n
i=1 zi = 0)

= 1
nZ

⊤Z

with Z =



z⊤1
...
z⊤n


. Recall that zi = V⊤

q xi , and thus Z = XVq.

Using X = UDV⊤, we get

Σ̂Z =
1
n
V⊤
q VD⊤DV⊤Vq

=
1
n

diag(d2
1 , . . . , d

2
q ).
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Sample covariance matrix of the components (cont’d)

Conclusions.

◮ The (sample) variance of component z(j) is
d2
j

n .

➠ Components sorted by decreasing variance.

◮ The (sample) covariances are equal to zero.

➠ The components are uncorrelated.

Statistics and Learning Lecture 10/10

290/310



25/50

Total variance of a sample
Definition / Proposition

The total variance of the p-variate sample (x1, . . . , xn) is

VT (x1, . . . , xn) =

p∑

j=1

var
(
x
(j)
1 , . . . , x

(j)
n

)
.

With centered xi ’s, we have

VT (x1, . . . , xn) =
1
n
tr(X⊤X ) =

1
n

r∑

j=1

d2
j .

Proof. Using that the xi ’s are centered, we have

VT (x1, . . . , xn) =

p∑

j=1

(
1
n

n∑

i=1

(
x
(j)
i

)2
)

=
1
n
‖X‖2

F =
1
n
tr(X⊤X ).

Then, using X = UDV⊤, with U⊤U = Idn and V⊤V = Idp, we obtain

VT (x1, . . . , xn) =
1
n
tr(D⊤D) =

1
n

r∑

j=1

d2
j .
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Proportion of explained variance
Total variance of the reconstructed sample (x̂1, . . . , x̂n):

VT (x̂1, . . . , x̂n) =
1
n
tr(X̂⊤X̂ ) = ?.

Using X̂ = ZV⊤
q , we get:

VT (x̂1, . . . , x̂n) = tr(VqΣ̂ZV
⊤
q ) =

1
n

q∑

j=1

d2
j .

Proportion of explained variance

The proportion of explained variance is defined as

VT (x̂1, . . . , x̂n)

VT (x1, . . . , xn)
=

∑q
j=1 d

2
j∑r

j=1 d
2
j

.
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Example: handwritten digits (MNIST, p = 282 = 784)
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Remark: similarity with the coefficient of determination (R2) in regression.
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Definition : clustering, clusters

Let E = {x1, . . . , xn} be a sample of n observations xi ∈ X .
◮ We assume that X ⊂ Rp, thus E ⊂ Rp.

Definitions
Clustering† consists in partitioning the set E in K non-empty parts
Ek ⊂ E , 1 ≤ k ≤ K , that contain “similar” observations.

The number K is either given or chosen automatically.

The sets Ek are called groups or clusters.

Notations.
◮ Denote by π(k) =

{
i ≤ n | xi ∈ E (k)

}
the indices in Ek .

◮ Π = {π1, . . . , πK} is a partition of {1, . . . n}.
† also called data partitioning.
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Example of clustering result

Example with p = 2 and K = 2
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Dissimilarity: definition

We are looking for a partition such that, for all k ,
◮ the instances† in cluster Ek are “similar” to each other,
◮ and as dissimilar as possible to those in other clusters.

Definition

In clustering algorithms, we call dissimilarity the
function D : X × X → R that is used to measure the “distance”
between examples.

Remark: not always a distance but satisfies in general
◮ the symmetry property: D(x , y) = D(y , x),
◮ the positivity property: D(x , y) ≥ 0.

† a.k.a. “examples”, “observations’, “data”, “individuals”. . .
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Dissimilarity: examples

◮ General form: D(xi , xi ′) =
∑p

j=1 dj

(
x
(j)
i , x

(j)
i ′

)

◮ Quantitative variable: dj

(
x
(j)
i , x

(j)
i ′

)
= f

(
|x (j)i − x

(j)
i ′ |

)
.

Example: dj

(
x
(j)
i , x

(j)
i ′

)
=

(
x
(j)
i − x

(j)
i ′

)2
.

Remark: it is often beneficial to normalize the variables:
x
(j)
i →

x
(j)
i
sj

, (usual choice for sj : sample standard deviation)

◮ Qualitative variable: dj

(
x
(j)
i , x

(j)
i ′

)
= cste if x (j)i 6= x

(j)
i ′ (0

otherwise)
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Within-cluster and between-cluster inertia
Let us write dii ′ = D(xi , xi ′).

Within-cluster inertia
It is defined as W (Π) (W=Within) :

W (Π) = 1
2
∑K

k=1
∑

i ,i ′∈πk
dii ′

Between-cluster inertia
It is defined as B(Π) (B=Between) :

B(Π) = 1
2
∑

k,k ′ 6=k

∑
i∈πk

∑
i ′∈πk′

dii ′

Property: W (Π) + B(Π) =
∑

i ,i ′ dii ′

Definition: T = 1
2
∑

i ,i ′ dii ′ is the total inertia.
◮ Does not depend on the partition.
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Proof of the property

T =
1
2

∑

i ,i ′
dii ′

=
1
2

∑

k,k ′

∑

i∈πk

∑

i ′∈πk′

dii ′

=
1
2

∑

k

∑

i ,i ′∈πk

dii ′

︸ ︷︷ ︸
W (Π)

+
1
2

∑

k,k ′ 6=k

∑

i∈πk

∑

i ′∈πk′

dii ′

︸ ︷︷ ︸
B(Π)
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Optimal partition :

Π⋆ = argminΠW (Π)

Remark: since W (Π) + B(Π) = T , Π⋆ = argmaxΠ B(Π).

Problem : this is a combinatorial optimization problem
◮ 34105 partitions for n = 10 and K = 4,
◮ ≈ 7.5 1011 partitions for n = 20 and K = 5.

Solution : look for a sub-optimal solution
➠ K -means algorithm
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Dissimilarity considered here : dii ′ = ‖xi − xi ′‖2.

With this choice of dissimilarity :

W (Π) =
∑K

k=1
∑

i∈πk
‖xi − x̄k‖2

where x̄k = 1
|πk |

∑
i∈πk

xi is the barycenter of the cluster.

➠ x̄k is called the centroid of cluster k .

Principle of the K−means algorithm
Iteratively,

◮ Given a partition Π, compute the
centroids x̄k .

◮ Modify Π in such a way that each
xi is associated to the cluster πk

whose (current) centroid x̄k is the
closest.

➠ Voronoï diagram

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x (1)

x
(2
)

centroidscluster boundary

Statistics and Learning Lecture 10/10

297/310



Expressions of T , W (Π) and B(Π) for dii ′ = ‖xi − xi ′‖2

T = 1
2

∑
i,i ′ ‖xi − xi ′‖2

= 1
2

∑
i,i ′ ‖(xi − x̄)− (xi ′ − x̄)‖2

=
∑

i ‖xi − x̄‖2 −∑
i,i ′(xi − x̄)⊤(xi ′ − x̄)

=
∑

i ‖xi − x̄‖2

W (Π) = 1
2

∑
k

∑
i,i ′∈πk

‖xi − xi ′‖2

= 1
2

∑
k

∑
i,i ′∈πk

‖(xi − x̄k)− (xi ′ − x̄k)‖2

=
∑

k

∑
i∈πk
‖xi − x̄k‖2

B(Π) = T −W (Π)

=
∑

k

∑
i∈πk
‖xi − x̄‖2 −∑

k

∑
i∈πk
‖xi − x̄k‖2

=
∑

k

∑
i∈πk
‖x̄k − x̄‖2

=
∑

k |πk | ‖x̄k − x̄‖2
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K -means algorithm

Require: K > 0 {number of clusters}
Require: (x̄1,0, . . . , x̄K ,0) {centroids initialization}

t ← 0
repeat✞✝ ☎✆Step 1 {construction of Πt from the centroids}

for all k do
πk,t = {i s.t. k = argmink′ ‖xi − x̄k′,t‖}

end for✞✝ ☎✆Step 2 {centroids update}
for all k do

x̄k,t =
1

|πk,t |
∑

i∈πk,t
xi

end for

t ← t + 1
until W (Πt−1) = W (Πt−2)
return Πt−1
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Properties of the K−means algorithm

Proposition

Let (Πt)t≥0 denote the sequence of partitions constructed by the
algorithm.

Then, there exists T such that :

1 ∀t ≤ T , W (Πt) < W (Πt−1),

2 W (ΠT+1) = W (ΠT ).

△! The algorithm terminates in a finite number of iterations, but

◮ the partition ΠT is not, in general, the optimal partition;
◮ it depends on the starting point (x̄1,0, . . . , x̄K ,0).

➠ Recommended: several trials with random starting points.
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Example: handwritten digits

Consider the digits “6” and “9” (644 images each).
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Example: handwritten digits

Represent each image by its first two principal components.
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Example: handwritten digits

-10 -8 -6 -4 -2 0 2 4 6 8 10

-12
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0
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taux mal classés = 0.92

mal classés

Z (1)

Z
(2
)

cluster E1

cluster E2

centroids
boundary

Note: here we use the labels, which are assumed unavailable in the non-supervised setting, to the sole
purpose of evaluating the quality of the partition that we have obtained.
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3.1 – Dissimilarity
3.2 – K -means algorithm
3.3 – Choice of the number of clusters

4 – A taste of some (more) advanced methods
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Homogeneity / dispersion
Reminder. We are looking for a partition such that, for all k ,
◮ the instances† in cluster Ek are “similar” to each other,
◮ and as dissimilar as possible to those in other clusters.

Definition: dispersion measure

The dispersion of cluster Ek is (often) measured by

Sk =


 1
|πk |

∑

i∈πk

‖xi − x̄k‖q



1
q

,

with q a positive real number, to be chosen†.

Interpretation. The smaller Sk , the more homogeneous the
cluster.

† P.-H. Cournède’s lecture notes and scikit-learn use q = 1.
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Davies-Bouldin index

Definition: similarity of clusters Ek and Ek ′

Rk,k ′ =
Sk + Sk ′

‖x̄k − x̄k ′‖ , 1 ≤ k , k ′ ≤ K , k 6= k ′.

Interpretation. The clusters are more similar when their dispersion
is large with respect to the distance between their centroids.

Definition: Davies-Bouldin index of a partition

DB =
1
K

K∑

k=1

max
k ′ 6=k

Rk,k ′

➠ Use: choose K in order to minimize DB.
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Alternative method: silhouette values
Another indicator of the quality of a partition Π.

Let i ∈ πk . For each xi , define

◮ a(xi ): average distance to other points in the same cluster

◮ b(xi ): minimum average distance to points in another cluster

a(xi ) =
1

|πk |
∑

i′∈πk
‖xi′ − xi‖

b(xi ) = min
k′ 6=k

(
1

|πk′ |
∑

i′∈πk′
‖xi′ − xi‖

)

Interpretation : a(xi ) ≪ b(xi ) if the clusters are homogeneous and well
separated.

Silhouette value of partition Π

s(Π) =
1
n

n∑

i=1

b(xi )− a(xi )

max(a(xi ), b(xi ))

Choice of the number K of clusters:
∀Π, s(Π) ≤ 1 and we choose the partition such that s(Π) is maximal.
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Example: handwritten digits with digits 1, 6 and 9

-12 -10 -8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

10

Z (1)

Z
(2
)

K 2 3 4 5 6 7 8
DB(K ) 0.76 0.42 0.77 0.89 0.76 0.77 0.79
s(K ) 0.55 0.73 0.65 0.58 0.60 0.59 0.58
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Example: handwritten digits with digits 1, 6 and 9
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Example: handwritten digits with all digits

-10 -5 0 5 10 15
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Example: handwritten digits with all digits
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Example: handwritten digits with all digits

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 total
“0” 498 0 22 6 260 82 64 0 262 0 1194
“1” 0 1000 4 0 0 0 0 0 0 1 1005
“2” 3 1 234 122 12 202 54 3 60 40 731
“3” 1 0 29 230 4 211 5 5 131 42 658
“4” 0 21 70 112 2 42 3 144 19 239 652
“5” 2 0 61 37 66 171 88 1 119 11 556
“6” 3 6 135 0 128 43 335 0 10 4 664
“7” 0 2 2 49 0 6 0 458 1 127 645
“8” 2 7 82 138 1 93 1 17 41 160 542
“9” 0 10 0 64 0 3 0 303 7 257 644
total 509 1047 639 758 473 853 550 931 650 881 7291

Poor result ➠ need for a better dissimilarity measure !

(and, in particular, for a better representation)
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Non-linear dimension reduction

source: Yan Xu, Houston Machine Learning Meetup, 2017
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Example: auto-encoder

source: https://towardsdatascience.com, Applied Data Deep Learning Part 3
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Clustering based on mixture models (see PC)

source: bioinfo-fr.net
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